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PREFACE

1991 Interface Proceedings

The 23rd Symposium on the Interface between Computing Science and Statistics was held on April 21-
24, 1991, at the Seattle Sheraton Hotel, Seattle, Washington. The conference theme was "Critical
Applications of Scientific Computing: Biology, Engineering, Medicine, Speech...". The Symposium was
preceded by a workshop on Computational Molecular Biology.

Bellcore hosted the Symposium with Jon R. Kettenring serving as Program Chair. He assembled an
outstanding program with a committee that selected topics and invited speakers who collectively made
the Symposium a forum for the exchange of exciting new ideas and provided a spectrum of applications

for scientific computing. The members of the program committee were Mary Ellen Bock, Andreas Buja,
William DuMouchel, Nicholas Fisher, Gene Golub, Joe Hill, John McDonald, John Nash, Daryl

Pregibon, Werner Stuetzle, Michael Tarter, Luke Tierney, Paul Tukey, Paul Young, and myself. John
Nash devoted much time and effort to organizing a special multi-media session comprised of posters,
videos, and demonstrations. Tutorials were presented by Joe Hill, William Eddy and Mark Schervish.

The extremely successful workshop on Computational Molecular Biology was organized by Simon

Tavard and featured world-renowned speakers. The workshop served as a focused example of the very
real interface between biology, statistics, and computing science. This theme was evident in the keynote
address, "Opportunities for Statisticians and Computer Scientists in Biology", that was presented by Eric
Lander. Burton Smith transported those that attended the banquet into the computing world of tomorrow
by speaking on "Future Supercomputing". The talks presented in the workshop as well as the keynote and
banquet addresses are not included in these Proceedings.

Much of the success of a conference can be measured in terms of the number of attendees and the number
of contributed talks, which, for this Symposium, were approximately 400 and 116, respectively.
However, a significant indicator of the lasting enthusiasm that remains with the speakers after a

conference has ended is their commitment to undertake the task of completing the manuscripts that will
comprise the proceedings of that conference. These Proceedings include 78% of the contributed papers
and 65% of the invited papers that were given in Seattle - a more than adequate representation of the
work presented at the Symposium.

Organizing such a conference is an Herculean feat that necessarily requires the cooperation and
dedication of many people. I would like to thank all of those people at Bellcore and the University of
Washington who assisted in a myriad of ways. I would also like to thank Se ma Kaufman for servg as

Assistant Editor of these Proceedings. Accesion For
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Workshop in Computational Molecular Biology

9:00-9:05 S. Tavar6, University of Southern California.
Introduction

9:05-9:20 D. Galas, Department of Energy.
Overview

9:20-10:00 F. Cohen, UC San Francisco.
Computational aspects of the protein folding problem

10:00-10:40 T. Schlick, NYU.
New computational techniques for computing biomolecular
structures and their dynamics

10:40-11:10 Coffee Break

11:10-11:50 E. Branscomb, Lawrence Livermore National Labs.
Building physical genome maps by random clone overlap;
a progress assessment of work on human chromosome 19

11:50-12:30 E.A. Thompson, University of Washington.
Monte Carlo methods for linkage analysis and complex

modcls

12:30-1:50 Lunch

1:50-2:30 E.S. Lander, Whitehead Institute.
Dissecting complex inheritance: statistical and computational
issues

2:30-3:10 E. Myers, University of Arizona.
Practical and theoretical advances in sequence comparison

3:10-3:40 Coffee Break

3:40-4:20 R.J. Roberts, Cold Spring Harbor Labs.
Error detection in DNA sequences

4:20-5:00 M.S. Waterman, University of Southern California.

Computer methods for locating kinetoplastid cryptogenes



SYMPOSIUM SCHEDULE

Sunday, April 21, 1991

8:00 a.m. - 9:00 a.m. Registration (Pre - Function Area)
9:00 a.m. - 5:00 p.m. Workshop on Computational Molecular Biology (.sp .7en)
5:00 p.m. - 8:00 p.m. Registration (Area in front of Metropolitan Ballroom)
5:00 p.m. - 8:00 p.m. Board of Directors' Business Meeting and Dinner (Cedar)
8:00 p.m. - 10:00 p.m. Opening Reception (Metropolitan Ballroom)

Monday, April 22, 1991

8:30 a.m. - 9:45 a.m. Keynote Address: "Opportunities for Statisticians and Computer Scientists in Biology"
(Grand Ballroom C)

9:45 a.m. - 10:15 a.m. Break (Grand Ballroom A)

10:15 a.m. - 12:00 p.m. Invited A: Speech and Language (Grand Ballroom B)
Invited B: Scientific Computing Problems in the Aircraft Industry (Metropolitan Ballroom)
Invited C: Uncertainty and Graphical Models (West Ballroom)

Contributed A: Statistical Graphics (Douglas)
Contributed B: Multivariate Analysis (Juniper)
Contributed C: Random Number Generators - Simulation (Madrona)

12:00 p.m. - 2:00 p.m. Lunch

2:00 p.m. - 3:45 p.m. Invited A: Relational Databases: A Tutorial for Statisticians (Grand Ballroom B)
Invited B: Computing Problems in Environmental and Industrial Statistics (West Ballroom)

Contributed A: Software Testing (Douglas)
Contributed B: Computing and Graphics in Applications (Juniper)
Contributed C: Robustness (Madrona)

3:45 p.m. - 4:15 p.m. Break (Grand Ballroom A)

4:15 p.m. - 6:00 p.m. Invited A: Massive Databases (Metropolitan Ballroom)
Invited B: Engineering Applications of Computing-Intensive Methods (West Ballroom)
Invited C: Computational Methods in Spatial Statistics (Grand Ballroom B)

Contributed A: Artificial Intelligence - Belief Functions (Douglas)
Contributed B: Issues in Interactive Graphics (Juniper)
Contributed C: Time Series Prediction - Function Estimation (Madrona)

Tuesday, April 23, 1991

8:00 a.m. - 9:45 a.m. Invited A: Computationally Intensive Methods for Discrete Data (Grand Ballroom C)
Invited B : Data Visualization and Sonification (Grand Ballroom B)

Contributed A: Classification - Density Estimation (Douglas)
Contributed B: Statistical Inference (Juniper)
Contributed C: Genetics - DNA (Madrona)
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9:45 a.m. - 10:15 a.m. Break (Grand Ballroom A)

10:15 a.m. - 12:00 p.m. Invited A: Realistic Rendering : A Tutorial for Statisticians (Grand Ballroom B)
Invited B: Computer Modeling, Experimental Design and Data Analysis (Grand Ballroom C)

Contributed A: Neural Nets - Biological Systems (Douglas)
Contributed B: Bootstrap and Related Methods (Juniper)
Contributed C: Optimization - Genetic Algorithms (Madrona)

12:00 p.m. - 2:00 p.m. Poster/Video/Demo Session (.sp .7en)

2:00 p.m. - 3:45 p.m. Invited A : Virtual Interface Technology (Grand Ballroom C)
Invited B : Neural Networks (Grand Ballroom B)
Invited C : Computational Statistical Genetics (East Ballroom)

Contributed A: Tree-Based Methods (Douglas)
Contributed B: Information Retrieval - Record Linkage (Juniper)
Contributed C: Allocation Problems - Sequential Design (Madrona)

3:45 p.m. - 4:15 p.m. Break (Grand Ballroom A)

4:15 p.m. - 6:00 p.m. Invited A: Dynamic Statistical Graphics (Grand Ballroom B)
Invited B : Research Opportunities at the Interface of Biology, Statistics and Computing

(Grand Ballroom C)

Contributed A: Integration - Probability Computations (Douglas)
Contributed B: Databases and Information Processing (Juniper)
Contributed C: Problems Relating to Skewness and Kurtosis (Madrona)

6:30 p.m. - 7:30 p.m. Reception (Pre - Function Area)

7:30 p.m. - 10:00 p.m. Banquet (Grand Ballroom C)
Banquet Address: "Future Supercomputing"

Wednesday, April 24,1991

8:00 a.m. - 9:45 am. Invited A: Computational Problems in Biomedical Imaging (Grand Ballroom B)
Invited B : Parallel Computing: A Tutorial for Statisticians (Grand Ballroom C)

Contributed A: Spatial Data - Shape Analysis (Douglas)
Contributed B: Programming Environments (Juniper)
Contributed C: Estimation Problems I (Madrona)

9:45 a.m. - 10:15 a.m. Break (Grand Ballroom A)

10:15 a.m. - 12:00 p.m. Invited A : Multivariate Statistics and Visualization for Labelled Point Data (Grand Ballroom C)
Invited B: Statistical Computing Environments for the 21st Century (Cirrus)
Invited C : Bayesian Computing (Grand Ballroom B)

Contributed A: Image Analysis (Douglas)
Contributed B: Applications Areas (Juniper)
Contributed C: Estimation Problems II (Madrona)

12:00 p.m. End of Conference
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Abstract 2. Classification and Regression Trees

- We describe here the application of classification and re- An excellent description of the theory and implementa-
gression trees to some problems in speech and language. We tion of tree-based statistical models can be found in Classifi-
begin with a brief overview of the technique. We then de- cation and Regression Trees [L. Breiman, et al, 19841. A brief
scribe their application to: introduction to these ideas will be provided in this section

(1) End of sentence detection: The not-so-simple prob- for those who may not be familiar with them.
lem of deciding when a period in text corresponds to the Consider the not-so-simple problem for deciding when a
end of a declarative sentence (and not an abbreviation) is period in text corresponds to the end of a declarative sen-
produced with trees using the Brown corpus as input. The tence. This is not as trivial a classification problem as it
result is 99.8% correct classification. may first seem. While a period, by convention, must occur

(2) Segment duration modelling in speech synthesis: 400 at the end of a declarative sentence, one can also occur in
utterances from a single speaker and 4000 utterances from abbreviations. Abbreviations can also occur at the end of
400 speakers were used to build decision trees that predict a sentence. The tagged Brown corpus [Kucera and Francis
segment durations based on features such as lexical position, 1967] of a million words indicates that about 90% of periods
stress, and phonetic context. Over 70% of the durational occur at the end of sentences, 10% at the end of abbrevia-
variance for the single speaker and over 60% for the multiple tions, and about 1/2% in both. The two space rule after an
speakers was accounted by these methods, end stop is often ignored and is never present in many text

(3) Phoneme to phone prediction: A lattice of possible sources (e.g., the AP news).
close phonetic transcriptions given a phonemic transcription Figure 1 shows a classification tree for this problem
(from the orthography and a dictionary) is produced using trained on the Brown corpus. Let us first see how to use
the 4000 TIMIT database as input. The most likely phone such a tree for classification. Then we will see how the tree
corresponding to a phoneme can be predicted 83% correctly. was generated.
The five most likely phones can be predicted 99% correctly. The decision of when a period occurs at the end of a

sentence will depend on factors such as whether the word
following the period is capitalized or if the word containing

I. Introduction the period is a common abbrevation. Suppose we see the
text fragment "Smith. The". Does the period after "Smith"

Several applications of statistical tree-based modelling occur at the end of a sentence?
are described here to problems in speech and language. Clas- Starting at the root node in Figure 1, the first decision
sification and regression trees are well suited to many of the is whether the word after the period, "the" (case ignored
pattern recognition problems encountered in this area since here), is more likely than 27% of the time to occur at the
they (1) statistically select the most significant features in- beginning of a sentence relative to its frequency in text. The
volved, (2) provide "honest" estimates of their performance, answer is no (estimated from a database described below), so
(3) permit both categorical and continuous features to be the left branch is taken. The next split is whether the word
considered, and (4) allow human interpretation and explo- containing the period, "smith", is more likely than 1% to
ration of their result. First the method is summarized, then occur at the end of a sentence relative to its frequency in text.
its application to end-of-sentence detection in text, phonetic The answer is yes, so the right branch is taken. The next
segment duration prediction, and phoneme-to-phone classi- split concerns the case of the word after the period. Since it
fication are described. We conclude with some general re- is a capitalized word the left split is taken. Finally, the last
marks on the strengths and shortcomings of this method. question is whether the word containing the period, "Smith",
For other applications to speech and language, see (Lucassen is one of several common abbreviation types. Since it is not,
19841, [Bahl, et al 1987]. the left branch is taken to a terminal node that classifies this
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The first question - what stopping rule? - refers to
what split to take at a given node. It has two parts: (a)
what candidates should be considered, and (b) which is the
best choice among candidates for a given node?

A simple choice is to consider splits based on one x vari-
able at a time. If the independent variable being considered
is continuous -oo < x < oo, consider splits of the form:

55 s391102Do 42755142675
repr 1.04.5 x < k vs. x > k, Vk.

In other words, consider all binary cuts of that variable. If
the independent variable is categorical x E {1, 2,..., n =X,

3289/3547 8/ 67 Z.11consider splits of form:

next:ajase. e..upcas'onUM ZEA vs. ZEX-A, VA CX.

s a ' n In other words, consider all binary partitions of that variable.
More sophisticated splitting rules would allow combinations

5I5435~d 913/108 of a such splits at a given node; e.g., linear combinations of
/a " o continuous variables, or boolean combinations of categorical

l/psaeti.ul variables.
A simple choice to decide which of these splits is the

best at a given node is to select the one that minimizes the
513715283 133/152 estimated classification or prediction error after that split

based on the training set. Since this is done stepwise at each
node, this is not guaranteed to be globally optimal even for

Figure 1. Classification tree for end-of-sentence detection. the trining et.
the training set.

In fact, there are cases where this is a bad choice. Con-

sider Figure 2, whcre two different splits are illustrated for
case as indeed at the end of a declarative sentence.

In the training set, 5137 of the 5283 examples that
reached this node were correctly classified. This tree is a spLI1 sPLIn2
subtree of a better classifier to be described in the next sec-
tion; this example was pruned for illustrative purposes. go. 1: 1, N6. 1: 4

This is an example of a classification tree, since the deci- 4 3. 2
sion is to choose one of several classes; in this case, there are
two classes: I{end- of - sentence, not - end-of -sentence).

In other words, the predicted variable, y, is categorical. Trees
can be created for continuous y also. In this case they are
called regression trees with the terminal nodes labelled with V. 1: 300 so. 1: 100 N.. 1: 100 1: 00

a real number (or, more generally, a vector).
Classifying with an existing tree is easy; a more difficult

issue is how to generate the tree for a given problem. There
are three basic questions that have to be answered when Figure 2. Two different splits with the same misclassifica-
generating a tree: (1) what are the splitting rules, (2) what tion rate [after Breiman, et a]. 1984].
are the stopping rules, and (3) what prediction is made at
each terminal node?

Let us begin answering these questions by introducing
some notation. Consider that we have N samples of data,
with each sample consisting of M features, XhZ2,X3,- .. Z,. a classification problem having two classes (No. I and No.

In the end-of-sentence detection example, xj might be the 2) and 800 samples in the training set (with 400 in each

case of the word following the period, x2 the probability that class). If we label each child node according to the greater

the following word begins a sentence, etc. Just as the y (de- class present there, we see that the two different splits illus-

pendent) variable can be continuous or categorical, so can trated both give 200 samples misclassified. Thus, minimizing

the z (independent) variables. E.g., word case is categorical the error gives no preference to either of these splits [after

(can not be usefully ordered). while beginning word proba- Breiman, et al. 19841.
bility is continuous. The split on the right, however, is better because it cre-
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ates at least one very pure node (no misclassification) which
needs no more splitting. At the next split, the other node
can be attacked. In other words, the stepwise optimization
makes creating purer nodes at each step desirable. A simple
way to do this is to minimize the entropy at each node for En o Deltv Senteno Predcton
categorical y. Minimizing the mean square error is a common
choice for continuous y.

The second question - what stopping rule? - refers
when to declare a node terminal. Too large trees may match S
the training data well, but they won't necessarily perform
well on new test data, since they have overfit the data. Thusi
a procedure is needed to find an "honest-sized" tree. I

Early attempts at this tried to find good stopping rules I
based on absolute purity, differential purity from the par-
ent, and other such "local" evaluations. Unfortunately, good
thresholds for these are hard to find and vary from problem .

to problem.
A better choice is as follows: (a) grow an over-large tree -__"

with very conservative stopping rules, (b) form a sequence 0a a s

of subtrees, To,....T, ranging from the full tree to just 0.1

the root node, (c) estimate an "honest" error rate for each
subtree, and then (d) choose the subtree with the minimum
"honest" error rate.

To form the sequence of subtrees in (b), vary a from 0
(for full tree) to oo (for just the root node) in:

min [R(T) + arlTl. Figure 3.

where R(T) is the classification or prediction error for that

subtree and I T I is the number of terminal nodes in the Let us now discuss in detail the applications of these
subtree. This is called the cost-complexity pruning sequence. ideas to some problems in speech and language.

To estimate an "honest" error rate in (c), test the sub-
trees on data different from the training data, e.g., grow the 3. End of sentence detection
tree on 9/10 of the available data and test on 1/10 of the As the first example, let us look again at the end-of-
data repeating 10 times and averaging. This is often called sentence detection problem described above. A more com-
cross-validation. prehensive tree was generated using the the following fea-

Figure 3 shows misclassification rate vs. tree length for tures:
the end-of-sentence classification problem using a subset of 9 Prob[word with "." occurs at end of sentence]
the input features describe below. The bottom curve shows
misclassification for the training data, which continues to . Probword after '." occurs at beginning of sentence]
improve with increasing tree length. The higher curve shows @ Length of word with "."

the cross-validated misclassification rate, which reaches a * Length of word after ""

minimum with a tree size of about 20 and then rises again
with increasing tree length. * Case of word with ".": Upper, Lower, Cap, Numbers

The last question - what prediction is made at a termi- e Case of word after '.": Upper, Lower, Cap, Numbers
nal node? - is easy to answer. If the predicted variable is o Punctuation after "." (if any)
categorical, choose the most frequent class among the train-
ing samples at that node (plurality vote). If it is continuous, * Abbreviation class of word with ".":
choose the mean of the training samples at that node. - e.g., month name, unit-of-measure, title, ad-

The approach described here can be used on quite large dress name, etc.
problems. We have grown trees with hundreds of thousands The choice of these features was based on what humans
of samples with a hundred different independent variables, appear to use (at least when constrained to looking at a
The (expected) time complexity, in fact, grows only linearly few words around the "."). Facts such as "Is the word after
with the number of input variables (worst case is quadratic). the '.' capitalized?", "Is the word with the '.' a common
The one expensive operation is forming all binary partitions abbreviation?", "Is the word after the "." likely found at
for categorical z's. This increases exponentially with the the beginning of a sentence?", etc. can be answered with
number of distinct values the variable can assume, these features.
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The word probabilities indicated above were computed values as voiced fricative, unvoiced stop, nasal, etc. Conso-

from the 25 million words of AP news, a much larger (and in- nant manner takes on values such as bilabial, dental, velar,

dependent) text database. (In fact, these probabilities were etc. "Vowel manner" takes on values such as monopthong,

for the beginning and end of paragraphs, since these are ex- diphthong, glide, liquid, etc. and "vowel place" takes on val-

plicitly marked in the AP, while end of sentences, in general, ues such as front-low, central-mid-high, back-high, etc. All
are not.) can take on the value n/a if they do not apply; e.g., when a

The resulting classification tree correctly identifies vowel is being represented, consonant manner and place are

whether a word ending in a "." is at the end of a declar- assigned n/a. In this way, every segment is decomposed into

ative sentence in the Brown corpus with 99.8% accuracy. four multi-valued features that have acceptable complexity

The majority of the errors are due to difficult cases, e.g. a to the classification scheme and that have some phonetic jus-

sentence that ends with "Mrs." or begins with a numeral (it tification.

can happen). The word frequency was included as a continuoulsy
graded "function word" detector and was based on six

4. Segment duration modelling for speech synthesis months of AP news text. The stress was obtained from a
dictionary (which is easy, but imperfect). The last two fea-

400 utterances from a single speaker and 4000 utter- tures were used only for the multi-speaker database. The di-

ances from 400 speakers (the TIMIT database [Fisher, et alect information was coded with the TIMIT database. The

al. 19871) of American English, both which are manually speaking rate is specified as the mean duration of the two

hand-segmented and phonetically labelled, were used sepa- calibration sentences, which were spoken by every speaker.
rately to build regression trees that predict the duration of Over 70% of the durational variance for the single
the phonetic segments. Predicting these durations is impor- speaker and over 60% for the multiple speakers were ac-
tant both in work on speech synthesis and recognition. The counted for by these trees. Figure 4 shows durations and

following features were used: duration residuals for all the segments together. The large

* Segment Context: tree sizes here, many hundreds of nodes, make them somr

- Segment to predict what uninteresting to display.
These trees were used to derive durations for a text-

- Segment to left to-speech synthesizer. This approach offers a promising al-

- Segment to right ternative to heuristically derived duration rules (e.g., Klatt

aStress (0, 1, 2)

*Word Frequency: (rel. 25M AP words) sgrnnt Duratons

* Lexical Position: I

- Segment count from start of word

- Segment count from end of word

- Vowel count from start of word

- Vowel count from end of word I

* Sentence Position:

- Word count from start of sentencee

- Word count from end of sentencee 0_

* Dialect: N, S, NE, W, SMid, NMid, NYC, Brat Duration Re~uals

* Speaking Rate: (rel. to calibration sentences)
Coding the phonetic context required special considera-

tions since more than 50 phones (using the TIMIT labelling)
can precede a stop in this context. If this were treated as a

single feature, more than 250 binary partitions would have to "
be considered for this variable at each node, clearly making
this approach impractical. Chou [19871 proposes one solu-
tion, which is to use k-means clustering to find sub-optimal,
but good paritions in linear complexity.

The solution adopted here is to classify each phone in

terms of 4 features, consonant manner, consonant place,
.vowel manner", and "vowel place", each class taking on Figure 4.

about a dozen values. Consonant manner takes on the usual
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1976]. Since tree building and evaluation is rapid once the Would your name be Tom?
data are collected and the candidate features specified, this
technique can be readily applied to other feature sets and to Phoneme Prob Phone
other languages.

This approach is very data-intensive, though. Our w 97.9 w 1.7 -
uh 79.9 uh 9.2 ix 2.2 uw 2.0 ax

databases have tens or hundreds of thousands of segments. d 59.4 dc jh 28.1 dcl d 9.4 dcl 3.1 jh
We believe really good duration modelling will involve at y 76.1 y 22.8 -

least an order of magnitude more data. This presents not Uh 79.9 ub 9.2 ix 2.2 uw 2.0 ax
so much a computational problem, given the efficient algo- er 52.6 axr 23.2 r 15.8 er 6.3 -

n 79.8 n 18.6 nx 1.5 -
rithms for tree construction available, but a data collection ey 95.7 ey 1.3 eh 0.8 ih 0.7 ix

problem. We believe that automatic transcription [Ljolje A] 96.1 m 3.4 -
and Riley] may ultimately be the way to proceed. b 87.5 bcl b 4.5 pau b 3.9 bcl 2.5 b

iy 90.5 iy 4,9 ix 2.3 ih 1.2 -
t 92.9 tcl t 5.6 dx 0.6 t

5. Phoneme-to-phone prediction U 82.3 aa 7.4 ao 3.4 axt 2.2 ab
rn 96.1 m 3.7 -

The task here is given a phonemic transcription of an
utterance, e.g., based on dictionary lookup, predict the pho-
netic realization produced by a speaker [see also Lucassen,
et. al. 1984; Chou, 1987; Riley 1989, 1991; Chen 1990;
Randolph 19901. For example, when will a T be flapped (as Figure 5. Phonetic alternatives for "Would your name be
in American English pronunciation of 'pretty') or released Tom?
(as in phrase-initial T's). We used the following features to
decide this problem extracted from the TIMIT database:

e Phonemic Context:
- Phoneme to predict tions. This can be used, for example, to greatly constrain the

number of alternatives that must be considered in automatic

- Three phonemes to left segmentation when the orthography is known.

- Three phonemes to right These a priori probabilities, however, do not take into
account the phonetic context, only the phonemic. For ex-

eStress (0, 1, 2) ample, if DCL JH is uttered for the phoneme D in the ex-

* Word Frequency: (rel. 25M AP words) ample in Figure 5, then the Y is most likely deleted and not

* Dialect: N, S, NE, W, SMid, NMid, NYC, Brat uttered. However, the overall probability that a Y is uttered
in that phonemic context (averaging both D going to DCL

* Lexical Position: JH, D, etc.) is greatest. The point is that to incorporate the

- Phoneme count from start of word fact that "D goes to DCL JH implies Y usually deletes" is

- Phoneme count from end of -d that transition probabilities should be taken into account.
This can be done by including an additional feature for

* Phonetic Context: phone predicted to left the phonetic identity of the previous segment. The output
The phonemic context was coded in a seven segment win- listing then becomes a transition matrix for each phoneme.

dow centered on the phoneme to realize, again using the 4 The best path through such a lattice can be found by dy-
feature decomposition described above. The other features namic programming.
are similar to the duration prediction problem. Ignore the This, coupled with a dictionary, can also be used for
last feature, for the moment. letter-to-sound rules for a synthesizer (when the entry is

The tree for all phonemes grown on these features pre- present in the dictionary). The effect of using the TIMIT
dicts on the average 83% of the TIMIT labellings exactly. A database for this purpose is a somewhat folksy sounding syn-
large percentage of the errors are on the precise labelling of thesizer. Having the D "Would your" uttered as a JH may
reduced vowels as either IX or AX. be appropriate for fluent English, but it sounds a bit forced

A list of alternative phonetic realizations can also be pro- with existing synthesizers. Too much else is wrong. A very
duced from the tree, since the relative frequencies of different carefully uttered database by a professional speaker would
phones appearing at a given terminal node can be retained, give better results for this application of the phoneme-to-
Figure 5 shows such a listing for the utterance, Would your phone tree.
name be Tom? . (We use the TIMITBET phonetic sym-
bols in these examples [Fisher, et al. 1987]). It indicates, 6. Discussion
for example, that the D in "would" is most likely uttered On the whole, we have found classification and regres-
as a DCL JH in this context (59% of the time), followed by sion trees quite useful in modelling a variety of phenonema
DCL D (28%). On the average five alternatives per phoneme in speech and language. In part, it is their ability to ban-
are sufficient to cover 99% of the possible phonetic realiza-
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die both categorical and continuous inputs and outputs that
makes them attractive to us. The fact that they offer ef-
ficient algorithms, a well-established cross-validation proce-
dure, and a relatively perspicuous representation makes them
more appealing to us than, say, back-propogation neural net-
works for the problems we have described.

The principal difficulty we have found with this and sim-
ilar statistical approaches is that while the trees classify well
most of the time, they occasionally make egregious errors.
When noticed, it is possible to correct these errors by hand
modification of the trees. This is, however, quite tedious.
Further, if new data are used or new input features are tried,
the editing has to be redone (if the error remains).

What would be most appealing to us would be tech-
niques that would allow easy mixing of statistical learning
with hand specification. The user could hand specify what
he is sure of and leave to the statistics to fill in the rest the
best it can, letting us have our cake and eat it too.
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Abstract ment, the score is computed by taking the product of the
- Text analysis is a hot topic, and for good reason. prior probability, Pr(W ), and the channel probability,

Text is more available than ever before. Just ten years Pr(W I W). This procedure can be written as:
ago, the one-million word Brown Corpus (Francis and ARGMAXPr(W,) Pr( I  W )
Kucera, 1982) was still considered large, but even then, 1K
there were much larger corpora in use such as the 18 where ARGMAX finds the argument with the maximum
million word Birmingham Corpus (Sinclair 1987a, score.
1987b). These days, there are many places that regu-
larly use samples of text running into the hundreds of Thele prior probability, also known as the language
millions of words. And it is very likely that billions of model, is the probability that the e would be input towords will be available very soon. the channel. For example, in the speech recognition

application, it is the probability that someone would
All of this data provides a great research oppor- utter W,., whereas in the spelling correction application,

tunity; it easier these days to corpus data much more it is the probability that someone would type W. in
effectively than it was in the 1950s, the last time that practice, the prior is approximated by computing various
empiricism was in fashion. Text analysis focuses on statistics over a large sample of text.
broad (though possibly super':z.2) coverage of unres- The channel probability is the probability that the
tricted text, rather than a deep analysis of a restricted channel probabilty ise e p iito thedoman. Tis ragmtic view towrd cverge ad ~channel would transform the word sequence 1I~ into thedom ain. This pragm atic view to w ard coverage and per- s q e c . h si e ai e y h g f W s t e s m
formance distinguishes text analysis from so-called sequence 1. This relatively high if W is the same
"intelligent" approaches such as natural language as or ery similar" to d n, where the definition of
understanding. This approach has produced a number of "similar" depends on the application. The channel for
tools such as spelling correctors and part of speech speech recognition, for example, will have a high proba-
taggers that work on unrestricted text, with reasonable bility of mapping words that sound similar (e.g.,
accuracy and efficiency. -.- "writer" and "rider" in many American dialects) into

the same output representation. However, in other
1. Recognit Applicatlons applications such as optical character recognition,

"writer" and "rider" are unlikely to be confused by
Recognition applications are perhaps the most the channel because these words are optically quite dis-

obvious applications for large bodies of text. Three tinct. Thus, the channel model clearly depends on the
examples of recognition applications will be mentioned application as illustrated in the Table 1.
here: (1) Speech Recognition, (2) Optical Character
Recognition (OCR), and (3) Spelling Correction. Table 1: Examples of Channel Confusions

Imagine a noisy channel, such as a speech recog- in Different Applications

nition machine that almost hears, an optical character Application Input Output
recognition (OCR) machine that almost reads, or a typist Speech writer rider
that almost types. Good text (W,) goes into the chanrel, Recognition here hear
and corrupted text ( W) comes out the other end. Optical all all (A-one-L)

Noisy Chaynel - WCharacter of of
Recognition form farm

How can an automatic procedure recover the good input Spelling government goverment
text, W, from the corrupted output, W? In principle, Correction occurred occured
one can recover the most likely input by hypothesizing commercial commerical
all possible input texts, W, and selecting the input text
with the highest score. Using a classic Bayesian argu-
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It is convenient to partition the prior and the chan- Table 2 also shows that the judges are significantly
nel in this way, so that the same prior can be used for a better than all of the programs, indicating that there is
variety of recognition applications including speech room for improvement.
recognition, optical character recognition and spelling Table 2: Evaluation of Correct
correction. The channel, of course, generally cannot be Method Discrimination
ported from one application to another.

correct 286/329 87 ±41.9

2. Spelling Correction Judge 1 271/273 99 ±0.5

1 have found that spelling correction is a good Judge 2 271/275 99 ±0.7

application to look at because it is analogous to many Judge 3 271/281 96 ±1.1

important recognition applications based on a noisy channel-only 263/329 80 ±2.2

channel model (such as speech recognition), though prior-only 247/329 75 ±2.4

somewhat simpler and therefore possibly more amenable chance 172/329 52 ±2.8

to detailed statistical analysis. In (Kernighan, Church, The program, of course, is not making use of con-
and Gale, 1990), we described a program called correct text whereas the human judg, , did have access to a con-
which inputs a misspelled word such as absurb, and out- cordance line. The following examples show that the
puts a list of candidate corrections sorted by probability: task is extremely difficult without context
absorb (56%), absurd (44%). The probability scores are
the novel contribution; there are have been many pro- Table 3: Hard without Context
grais in the past that generated a (long) list of candi- Typo Choice 1 Choice 2
date corrections, but few have attempted to score the actuall actual actually
candidates by a stochastic model of the prior probability constuming consuming costuming
of observing the candidate correction Pr(c) and a chan- conviced convicted convinced
nel probability of observing a particular typo given the confusin confusing confusion
candidate correction Pr(t Ic). Both of these probabili-
ties were estimated from about 50 million words of Of course, the task becomes much easier if the context
Associated Press newswire (which includes about 15,000 is provided as demonstrated by the following four con-

typos which are used to train the channel model). cordance lines.

In evaluating the program, we restricted our atten- 1. in determining whether the defendant actuall will

tion to 564 typos that had exactly two candidate correc- die. In the 1985 decision, the...

tions. A panel of three judges were given the typo (e.g., 2. on Friday night, a show as lavish in constunning
absurb), the two candidate corrections (e.g., absorb and and lighting as those the late Liberace used to...
absurd) and a concordance line (e.g., it is absurb and 3. of the area. "When we're conviced and the Peru-
probably obscene for...), and were asked to select one of vians are convinced (the base camp)...
the two corrections (or none-of-the-above). The judges
found this task more difficult than they had anticipated, 4. The political situation grew more tin tody,
and very time consuming (it took each judge about four with an official media report indicating...
hours to grade the 564 examples). In addition, the Both (Mays et al., 1990) and (Church and Gale,
judges felt that the task would have been much harder 1991a) have found that statistical n-gram models of con-
without the concordance line, suggesting that context text can help considerably, although performance is still

should be incorporated into the program. far below that of the human judges. A quick look at the

Table 2 shows that correct agrees with the major- concordance lines above shows (a) that the relevant con-

ity of the judges in 87% of the 332 cases of interest.1 In textual clues are often fairly close to the typo, and (b)
order to help calibrate this result, we compared correct that there are relatively few cases that make use of
to three inferior methods: channelonly, prior-only and long-distance syntactic dependencies. (a) suggests that
chance. Table 2 shows that both the channel-only and simple n-gram methods might work fairly well in many

the prior-only models provide a significant contribution cases, and (b) suggests that more complicated "intelli-

over chance, and that correct, which is a combination of gent" parsing methods might. not be worth the trouble.

the two, is significantly better than either in isolation. 3 The T* M

I We restrirted our attention to thse cases where at least two One of the simpler and more popular priors is the
judges selected one or the two candidate corrections, and they n-gram model. This model makes the simplifying
agreed with each other. assumption that, word probabilities depend on only the

previous n-I words, and that long-distance dependences
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which extend beyond this limited window can be entropy.
igrored. Jelinek (1985) uses the example shown in
Table 4 to illustrate the power of the trigram model. In 4. Word Frequencies and Word Association Nm- s
the sentence, We need to resolve all the important issues The trigram model does a good job of modeling
within the next two days, most of the words are word frequencies which are very important, as any
extremely predictable from the trigram context (the psycholinguist knows. Generally speaking, subjects
current word plus the previous two). Note that we is the respond more quickly and more accurately to a high fre-
9't most likely word to begin a sentence in his model; quency word (e.g., a word that appears relatively often
the words the, this, one, ..., in are more likely to begin a in a sample of text such as the Brown Corpus) than to
sentence than we. The word need is found to be the 74 a saple owfteuc a the worpus)ociantoan unusual low frequency word. The word association
most likely word to follow we; the words are, will, ..., effect is similar except that it involves pairs of words.
do are more likely than need. And so on. Jelinek uses In general, subjects respond more quickly and more
this example to argue that the rank is usually very small accurately to a word like doctor if it follows a highly
in comparison to the vocabulary size, which was 20,000 associated word such as nurse (Meyer, Schvaneveldt and
words in this example. Ruddy, 1975, p. 98).

Table 4: Example of Trigrams (Jelinek, 1985 Word frequencies are fairly easy to estimate from
The This One Two A Three Please In We 9 a sample of text such as the Brown Corpus. Hanks and

are will the would also do need 7 I have argued that word associations should also be
to 1 estimated by computing various statistics over large cor-

know have understand ... resolve 98 pora (Church and Hanks, 1990). It is more common in
the this these problems ... all 9 the psycholinguistic literature to find a study like

issues problems the 3 (Palermo and Jenkins, 1964); they estimated word asso-
necessary data information ... important 641 ciation norms for 200 words by asking a few thousand

role thing that ... issues 9 subjects (psychology undergraduates) to write down a
and from in to are with ... within 66 word after each of the words to be measured. Results

the 1 were reported in tabular form, indicating which words
next I were written down, and by how many subjects, factored

be two 2 by grade level and sex. The word doctor, for example,
meeting months years ... days 7 is reported on pp. 98-100, to be most often associated

with nurse, followed by sick, health, medicine, hospital,
Note that function words (e.g., to, the) are gen- man, sickness, lawyer, and about 70 more words.

erally more predictable than content words (e.g., resolve,
important). This turns out to be important in speech 5. Strength and Weaknesses
recognition because the shorter function words are more The main advantage of the trigram model is that it
easily confused by the channel model and so it is for- has very low entropy, 1.76 bits per character (Brown Ct
tunate that they are more predictable from context. al., 1991). Parsers generally don't do as well because

Some of the content words also have relatively they tend to ignore word frequencies. The trigram
small ranks. Consider, the content word issues, for model is also able to capture some collocations and
example. It turns out that there are relatively few words word associations.
that follow the word important (at least, in the sub- The most obvious weakness with the tigram
domain of IBM office correspondences). This kind of model is the lack of syntax; the model makes no attempt
collocational (or co-occurrence) 2 constraint between to capture long-distance dependencies such as syntactic
words are often not captured very well with a syntactic agreement, conjunction and wh-movement, In fact, the
parser. Perhaps this is the reason why igran models lack is syntax is probably not the most serious problemhave tended to out-perform so-called "intelligent" with the model. The sparse-data problem is extremely
approaches, when pxformance is measured in terms of serious since many tzigrams do not appear very often in

2 HaJliday (19M6, p. 150) was v-ry interested in the difference the training corpus, if at all. In addition, the tnigram
between strong and powerful. Although both words have very model assumes that trigrans have a binomial distribu-
similar syntax and semantics, there do seem to be some contexts tion, an assumption which is often violated in practice.
where one word is much more appropriate than the other, e.g.,
strong tea vs. powerful drugs. The terms collocation, co-
occurrence and lezia have been used to describe these kinds or
constraints on pairs of words.
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B. Parsers May Nt Help Very Much pie code does almost as well as the Unix(TM) compress

It has been common practice, especially during program, which uses the Lempel-Ziv algorithm (Welch,

the first Darpa Speech Understanding Project (Klatt, 1984).

1977), to try to use a syntactic parser to take advantage In general, models based on words achieve much
of contextual constraints. Unfortunately, there has not better compression than models based on characters. A
been very much success. If I tell you that the next word unigram model (a Huff man code based on word proba-
is going to be a noun, then I really haven't told you bilities) requires about 2.1 bits per character (Brown,
very much. The following example illustrates the prob- personal communication). Note that the unigram model
lem. out-performs Lempel-Ziv by a considerable margin,

In the Optical Character Recognition (OCR) appli- indicating that the standard Unix(TM) compress pro-

cation, it is likely that the words form and farm might gram could be improved significantly.

be confused by the channel model. Imagine, for exam- The trigram model achieves even better compres-
ple, that they were found in one of the following two sion, 1.76 bits per character (Brown et al., 1991). This
contexts: last model is remarkably close to Shannon's estimate for

Sfarm crethe entropy of English. However, it isn't exactly fair to
federal farm credit compare these estimates since Shannon's estimate was

farm o based on a 27 character alphabet whereas these other
so me or J of estimates are based on a 256 character alphabet.

Nevertheless there does seem to be some reason to
Most people would have little trouble deciding that farm believe that the trigrain model is doing quite well, and
is much more likely in the first context and that form is that it might be almost as good as native speakers in
much more likely in the second context. In fact, trigram predicting the next letter.

models also have little difficulty with this example.

However, a syntactic parser wouldn't help very much. Table 5: Entropy of Various Language Models
The parser might tell us that the missing word is a noun, Model Bits /char
but that wouldn't help distinguish between form and Ascii 8
farm because they are both nouns. In general, if one Huff man code each char 5
were to compare the relative importance of local context Lempel-Ziv (Unix(T4) compress) 4.43
versus long-distance dependencies, one would almost Unigram 2.1
certainly find that the local context is much more impor- Trigram 1.76
tant, at least in terms of predicting the next word. Shannon's Estimate 1.25

The linguistic notion of syntax (constraints on
nouns, verbs, subjects, objects, phrases, etc.) was not 8. spaxm [ata "Fixes"
intended to be used in a noisy channel model. Chomsky
has always been more interested in linguistic com- as i a the s ars dta poe is
petence (an idealization of syntax) than performance probably the most serious weakness with the trigram
(deviations that are found in the real world including: model. In fact, there are eusually many more parameters
word frequencies, word association norms, collocations, than data points. Let V be the number of types in the
statistical preferences, memory and computational limi- vocabulary and N be the number of tokens in the
tations, etc). It should not be surprising that perfor- corpus. Then there are V3 parameters, which is gen-
mance issues are important in recognition applications, etly much much larger than N, the size of the training
and consequently, models that are based too closely on st Fo eap, i the Bron Corpus, te e
idealized notions of syntactic competence are likely to 15 tr ioryms, on N 10b tokens
run into trouble when they are tested on real dat. to train from. Obviously, most. of the possible trigrams

will not be observed in the training corpus.

7. Entropy One might think that one could fix the sparse data

It is common practice to evaluate a language problem by collecting more data, but ironically V3 gen-
model on the basis of its entropy. The standard ascii erally grows much faster than N. That is, if you collect

code uses 8 bits to represent a character. Obviously, a larger corpus (more tokens), then you will also find

many of these bits are unnecessary since some letters more types (vocabulary items). It isn't exactly clear

are much more common than others. If one were to how these two function grow, but I believe that the

take advantage of letter frequencies using a Htuffman vocabulary grows almost linearly with corpus size. In

code to encode each letter one at a time, then it would any case, V 3 grows much much faster than N, so col-

take alb,ut 5 biL, to code each character. This very sim- lecting more data is not a solution to the sparse data
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problem. The first method, ADDI (Jeffreys, 1948), simply

Something has to be done about the sparse data. adds one to all of the observed counts and then adjusts
Katz (1987) suggests "backing-off" from the trigran the total appropriately by multiplying by N/(N+S)
estimates when there isn't enough data. Basically, the where S is the number of types (e.g., V3 ). This method

idea is to replace trigram estimates with a combination is generally a disaster, especially when S is much larger

of unigram, bigram and trigram estimates. This is obvi- than N, which is most of the time. In a spelling correc-

ously a good idea. tion application, Gale and I have found that this method
produced very misleading estimates and concluded thatOne can also try to reduce the number of parame- estimating the context badly can be worse than not

ters by grouping words into classes (e.g., parts of estimating the context al can e 1990).

speech, synonym sets, etc.) Brown et al. (1990b) sug-

gest building classes with a self-organizing procedure The second method, GT (Good, 1953), depends
which joins words based on a mutual information cri- only on the modest assumption that ngrains have bino-
terion. The criterion has the effect of joining together mial distributions. Unfortunately, even this modest
words that have similar distributions (e.g., days of the assumption turns out to be highly problematic. Words
week, months of the year, etc). Although this particular and ngrams are like busses in New York City; they are

suggestion is very intriguing, it probably won't help too social animals and like to travel in packs. The word
much with the sparse data problem because it isn't pos- earthquake, for example, has a very bursty distribution
sible to determine that two words have a similar distri- in the Associated Press (AP) Newswire, depending on
bution unless you have a fair number of examples of whether or not there has recently been an earthquake.
both words. The real problem is what to do with words The word turkey also has a bursty distribution in the
that you haven't seen very often in the training set. AP, with a burst appearing once a year in late
Worse, what do you do with words that you haven't November. In fact, one can show that the binomial
seen at all. The criterion for joining words cannot assumption is often seriously off depending on what
depend on data that is unavailable, happens to be in the news, among other things.

The last method, HO held-out estimate (Jelinek
9. MLE, ADD1, GT and HO and Mercer, 1985), assumes the least, merely that the

Finally, one can "adjust" frequency counts, espe- training and test corpora are generated by the same pro-
cially when they are small. In principle, n-gram proba- cess. This method splits the text into two halves and
bilities can be estimated from a large sample of text by uses the first half to determine N,, the number of types

counting the number of occurrences of each n-gram of that occur r times, and the second half to determine
interest and dividing by the size of the training sample. their total mass C,. r* is then simply set to C,/A4.

This method, which is known as the "Maximum Likeli- For example, to determine 0*, the adjusted count for
hood Estimator," (NLE) is very simple. However, it is ngrams that did not occur in the first half, one would
unsuitable because n-grams which do not occur in the compute Co, the total count in the second half for
training sample are assigned zero probability. This is ngrams that did not appear in the first half, and divide
qualitatively wrong for use as a prior model, because it by No, the number of ngram types that did not appear in
would never allow the n-gram, while clearly some of the the first half.
unseen n-grans will occur in other texts. For non-zero In (Church and Gale, 1991b), we compared the
frequencies, the NLE is quantitatively wrong. GT and HO methods for estimating bigrain frequencies

Three alternatives will be mentioned here. These in 22 million words of Associated Press Newswire and
methods all take the observed counts (r) and produce an found that the GT method was slightly better when the
adjusted count (r*). The last two methods also make binomial assumption was appropriate. Tables 6 and 7
use of N, the number of types that occur exactly r show that both methods produce remarkably similar esti-
times. mates for r*.

r* r NILE Table 6: Good-Turing (GT) Estimate
r Nr r*

r* -(r +1) N +5 ADDI 0 74,671,100,000 0.0000270
N 1 2,018,046 0.446

r* =(r+1) N,+ GT 2 449,721 1.26
N 3 188,933 2.24

r Q,/N, HO 4 105,668 3.24

r* = C, /N, H
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Table 7: Held-Out (HO) Estimate methods appear to work remarkably well when the

r Nr Crassumptions are met, but unfortunately, there are serious

S74,671,100,000 2,019,187 0.0000270 problems with the assumptions. There has recently been
1 7 ,1,040 92,08 0.0 0 some interest in adaptive models, models that can take
1 2,018,046 903,206 .448 advantage of recency effects and forgetting effects. If
2 449,721 564,153 1.25 words were binomially distributed, then the probability
3 188,933 424,015 2.24 of a word should be independent of how long it has
4 105,668 341,099 3.23 been since it was last mentioned. In the AP wire, it

The agreement of the two methods, though, is appears that the probability increases dramatically when

partly due to the fact that we took extraordinary meas- a word has been mentioned recently, and drops fairly

ures to control for the New York City bus effect That consistently with the length of time since the last men-
tion.

is, we spit the text into two samples by randomly

assigning each bigram to one of the two samples. This 1 Applications
effectly destroyed any time structure that might have
existed in the two samples. If we had split the text into Section 1 discussed the use of noisy channel
two halves sequently by assigning the first six months of methods in recognition applications. This section will
the newswire to the first half and the second six months show how the same methods can be used to address
to the second half, then we would have observed translation applications such as Machine Translation
significant differences due to the non-binomial nature of (MT). The approach was first suggested by Weaver in
the news. 1949 and is currently being revived by Brown et al.

Table 8 shows that there is considerable agree- (1990a). If you would like to translate words in a

ment when the text is split randomly. The t-scores are source language, K, (e.g., French) into words in a target

possibly somewhat larger than we would like, but they language, W (e.g., English), you imagine that the

are really not too bad considering that we are dealing source words W, were the output of a noisy channel.

with extremely infrequent events. The I-scores are com- The translation task is to find the most likely input to

puted using an estimate of variances which is described the noisy channel given the observed outputs.

in (Church and Gale, 1991b). Table 9 shows that there t' - Noisy Channel -. IV
is considerable disagreement if the texts are split Viewed in this way, translation is very similar to recog-
sequentially. nition. In principle, one can recover the most likely

Table 8: Split Text Randomly input by hypothesizing all possible target language texts,
r HO GT t Wt, and selecting the target text with the highest score,

0 .000027041 .000027026 -. 7 where scores are computed by basically the same for-
1 .4476 .4457 -2.9 mula as above:
2 1.254 1.260 2.5 ARGA Pr( I) Pr( I, I IV)
3 2.244 2.237 -1.5 Wt
4 3.228 3.236 1.0
5 4.21 4.23 1.8 This information theoretic approach to machine
6 5.23 5.19 -2.8 translation is extremely controversial among researchers

in machine translation because it questions many of the

Table 9: Split Text Sequentially basic assumptions that have dominated the field since

r HO GT t the 1950s when Chosky (1957) and others pointed out

0 0.00001684 0.0001132 479.4 that statistical n-gram methods are incapable of model-

1 0.4076 0.5259 113. ing certain syntactic constraints such as agreement over

2 1.0721 1.2378 47.0 long distances. Brown et al. (1990a) argue that the sta-

3 1.9742 2.2685 37.8 tistical approach is more tractable than it was in the

4 2.8632 3.1868 26.4 1950s. Computers are certainly faster than they were

5 3.7982 4.2180 25.8 then. In addition, and probably much more importantly,

6 4.7822 5.2221 15.4 it is now possible to find large amounts of parallel text,
text such as the Canadian parliamentary debates which

In summary, there are quite a number of very are available in multiple languages. Brown et al. esti-
powerful techniques such as CT and HO for estimating mate Pr(Wt) and Pr( W8 I Wt) by computing various
the probability of an n-gram that did not appear very statistics over these parallel texts. Although the
many times in the training corpus, if at all. These approach may be deeply flawed for many of the reasons
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that were discussed in the f950s, there is, nevertheless, tagged text as possible to estimate the parameters, and
a growing community ofO researchers in corpus-based one should resort to re-estimation only when it is not
linguistics such as (0avans and Tzoukermann, 1990) possible to find a sufficient amount of tagged training
who are becoming convinced that the approach is worth material.
pursuing because there is a very good chance that it will There are, of course, many other "translation"
produce a number of lexical resources that could be of applications that are very analogous to machine transla-
great value to their research. tion and part of speech tagging where one wants to

transduce one tape of symbols into another. In speech
11. Part cf Speech Tagging recognition, for example, it is common to use these

This description of the machine translation prob- noisy-channel methods to translate a sequence of acous-
lem is fairly general and can be applied to quite a tic labels (e.g., the output of a filter bank) into a
number of transduction problems. Consider, part of sequence of phonetic labels (e.g., consonants and
speech tagging, for example. A part of speech tagger vowels).
takes an input sequences of words such as 7he table is
ready. and outputs a sequence of parts of speech such 12. Conclusions
as: Article Noun Verb Adjective. The problem is non- Quite a number of applications have been men-
trivial because it is well-known that part of speech tioned in just a few pages: spelling correction, speech
depends on context. The word "table," for example, is recognition, optical character recognition, text compres-
usually a noun, but it can also be a verb in some con- sion, machine translation and part of speech tagging. Of
texts such as: 7he chairman will table the motion. course, there are many other applications that should

The tagging problem can be viewed as a transla- have been discussed, especially information retrieval
tion problem, not unlike machine translation. Imagine (Salton, 1989) and author identification (Mosteller and
that we have a sequence of parts of speech P that go Wallace, 1964), but there just wasn't enough space to
into the channel and produce a sequence of words W. say everything.
Our job is to try to determine the hidden parts of speech All of this work points very strongly to the fact
P given the observed words W. that 1950-style empiricism is back in fashion. I have

P - Noisy Channel - W been asked to explain why, and I'm not sure that I have
a good answer. Of course, it is possible that the current

As before, in principle, one can hypothesize all possible interest in empiricism is just a fad that will soon fade
inputs to the channel and score them by: away. But, I would like to believe that there are good

ARGMAXPr(P) Pr( WIP) reasons for the revival. One can point to huge advances
P in computational power since the 1950s. But, even

Again, the parameters in this model are generally more importantly, the electronic culture has now per-
Amat , bmeated the publishing sector to such an extent that it is

estimated by computing various statistics over large

bodies of text, Both Church (1988) and DeRose (1988) no longer difficult to find hundreds of millions of words

have used the Tagged Brown Corpus (Francis and of text in electronic form. And there is promise of bil-

Kucera, 1982) for this purpose, which is particularly lions of words in the very near future. he availability

convenient because it comes with parts of speech that of data on such a massive scale has made it possible to

were check by hand. deMarcken (1990) used the carry out experiments that just weren't possible back in

Tagged Lancaster/ Oslo-Bergen Corpus (LOB) which the 1950s. Indeed, many of the experiments discussed

also comes with parts of speech. Others such as Jelinek in this paper would not have been possible without the

(1985) have used the Baum-Welch Algorithm (Baum, availability of very large corpora.

1972) to estimate the parameters from raw untagged Referetnes
text.

I have always felt that hand-tagged text produces Brown, P., Cocke, J., Della Pietra, S., Della Pletra, V.,
more reliable estimates, and recently Merialdo (1990) Jelinek, F., Lafferty, J., Mercer, R., Rossin, P.

performed an experiment which seems to back-up my (1990a), "A Statistical Approach to Machine

suspicion. He estimated the parameters using some Translation," Computational Linguistics.

hand-tagged data and then ran the re-estimation pro- Brown, P., Della Pietra, V., deSouza, P., Lai J., Mercer,
cedure and compared performance before and after re- R. (1990b) "Class-based N-gram Models of
estimation. One might have thought that re-estimation Natural Language," unpublished ms., IBM.
ought to improve performance, but he found just the Brown, P., Della Pietra, S., Della Pietra, V., Lai J.,
opposite. He concludes that one should use as much Mercer, R. (1991) "An Estimate of an Upper
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Bound for the Entropy of English," submitted to Katz, S. M., (1987), "Estimation of probabilities from
Computational Linguistics. sparse data for the language model component of

Chomsky, N. (1957) Syntactic Structures, The Hague: a speech recognizer," IEEE Transactions on

Mouton & Co. Acoustics, Speech, and Signal Processing, v.

Church, K. (1988) "A Stochastic Parts Program and ASSP-35, pp. 400-401.

Noun Phrase Parser for Unrestricted Text," Kernighan, M., Church, K., Gale, W. (1990) "A Spel-

Second Conference on Applied Natural Language ling Correction Program Based on a Noisy Chan-

Processing, Association for Computational nel Model," Coling, Helsinki, Finland (proceed-

Linguistics, Austin, Texas. ings are available from the Association for Com-
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Abstract provide all of these, particularly a criterion for
"- Adaptive resonance theory (ART) neural networks are measuring the similarity of geometrical shapes.

being developed for application to the industrial
engineering problem of group technology -- the reuse of In the following, we will address the general application
engineering designs. Two and three dimensional of neural networks to the group technology problem,
representations of engineering designs are input to ART- where the designs are derived from a CAD system. Later
1 neural networks to produce groups or families of in the paper, we will discuss the results of a specific
similar parts. These representations, in their basic form, neural database architecture that finds similar marker (ie.
amount to bit maps of the design, and can become very decals) designs. Markers are found in the passenger
large when the design is represented in high resolution. compartments and service bays of commercial airliners,
We describe a "neural database" system under and indicate locations of services, warnings, and
development. This system demonstrates the feasibility restrictions to people who move and work in and around
of training an ART-i network to first cluster designs the aircraft. In this specific system, the data is not
into families, and then to recall the family when derived from a CAD system, but is acquired from paper
presented a similar design. This application is of large drawings of the markers with the help of a PC based
practical value to industry, making it possible to avoid optical scanner, and is transferred to the network in raster
duplication of design efforts. format.

Introduction In the next section, we describe how a specific artificial
Money and time can be saved by manufacturing neural network can meet all of the requirements of a
companies when engineering designs are reused. This is group technology implementation. We will assume that
particularly true in companies producing large systems, there exists an electronic description of the design
such as aircraft, that must be customized to varying information. First we will introduce the ART-I
layouts. Often the same design is inadvertently algorithm. We will then discuss the process of
redesigned at great expense. This can happen frequently information translation into the binary representations
in large systems which involve teams of designers. A needed for input to the network. A modification of the
new designer will have no knowledge of a previous simulation is mentioned that makes use of data
designer's work unless the technology exists to retrieve compression techniques. Finally, the markers retrieval
and compare designs. In industrial engineering, the system will be described.
study and implementation of such retrieval systems is
referred to as group technology. ART-I Algorithm

The adaptive resonance theory (ART) neural network
Several basic requirements must be met for the practical model was developed by Carpenter and Grossberg1 . The
implementation of group technology. First, the designs version of this model that processes binary input
must exist in, or be convertible to, an electronic patterns is referred to as ART-1. The ART-I neural
description. Second, an appropriate criterion must be network model is canonically represented by a coupled
designed to determine similarity of designs. Third, the set of ordinary nonlinear differential equations1 . If
search algorithm must exceed a threshold of performance appropriate assumptions are made about the relationship
on the host computer to provide timely responses for the between the learning rates and the dynamical time
user. Fourth, a retrieval system should output the best constants, this system of equations can be replaced by a
few matches for consideration by the human designer.
Fifth and final, the database must be easily maintainable procedural algorithm2 . This "fast learning" mode ofand updateable. Few traditional database technologies learning requires that the learning process stabilize each

time before the next input pattern is presented. The
impact of this assumption on both hardware and
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software implementation is large: the computational groupings, • is the dot product, and I . I is the L1 norm.
steps of the algorithm can now be directly mapped onto During learning, the conjunction of the template and the
an algorithmic processor. For this model, there is no input vector must be calculated as well. That is,
need to become embroiled in the implementation issues Tk +- (1 n Tk),
of dynamical systems. where n is bit-wise "and". These calculations constitute

The basic functionality of this algorithm is to a major portion of the processing load of the ART-I

autonomously place input patterns into clusters or algorithm.

families. These patterns are represented as binary The Neural Network Approach
vectors. Clusters are formed and modified during the
training process, often referred to as "self-organizing" Healy and Caudell have further developed the
learning. The number of clusters is not preset at the understanding of the logical functionality of the ART-I
beginning, but is determined by the underlying structure network and have developed a methodology for the
of input patterns used during training and by a small set design of macrocircuits of ART-I network modules 4 .
of network parameters. After training, the network is Through the study of these logical architectures, we have
used as a "neural database", being queried by new input applied ART-I to the group technology problem. In
patterns to find the closest family. Again, the input this application, the network is trained on design
patterns must be represented as binary vectors, representations derived directly from descriptions

generated by such computer aided design (CAD)
A characteristic of this self-organizing neural network is packages such as CATIA and CAD-KEY. Two, three,
the formation of memory templates or archetypes during and higher dimensional descriptions are being used to
the repeated exposure of the network to the training set. represent features of designs.

A template isolates a conjunctive generalization3 of the
attributes representing the member patterns in that The CAD system usually stores a "constructive
cluster. If the input pattern, denoted 1, is found to be a description" of the part. That is, a list of instructions
member of an existing cluster after a search of neural that tell a graphics rendering program how to draw a
memories, then this pauern is added to the membership diagram of the part. The diagram tells the design
list for that cluster, and the template associated with this engineer how this part fits into the overall system, the
cluster is updated to include the features of the new manufacturing engineering how to design the
pattern. The updated template is a conjunction, or an manufacturing process for the part, and the field service
"and", of the matching template and the newly added engineer how to maintain the part in the system. From
member input vector, this constructive description, a transformed

representation must be produced by a preprocessing

On the other hand, if I is new to the system's system to become the input for the neural network. The

memories, then a new cluster is formed with I being the description of the design may come in other forms,
first member. In this case, the new template including raster scanned images as mentioned above. In

representing the new cluster becomes I. (That is, the this later case, no preprocessing is required.

archetype for a group with one member is the member
itself). This process proceeds automatically with no For a 2D designs, such as a sheet metal floor stiffener in
outside supervision, finding order and structure in the an aircraft, the simplest transformed representation is a
stream of input patterns. For the learning process to binary pixel map or silhouette; ones where there is solid
stabilize, the training set of input patterns is repetitively material and zeros where there is none, defined over a
presented to the network. In summary: when a new predefined 2D graphical view port. This is shown in
input vector is presented, it is then either placed into Figure Ia. The view port is a window on 2D space.
one of the existing clusters, or classified as a novel The binary pixel map is strung-out or rasterized into a
pattern and added to a new cluster, binary vector by concatenating rows of pixels from the

view port. This vector is subsequently fed to the ART-I

During the search of the memory templates, the dot neural network simulator for clustering into families.

product of each memory template with the input vector
is computed, as are the vector norms of each template Other forms of information may be represented as binary
and the input vector. That is, patterns. For example, Figure lb illustrates how the

position of fastener holes can be represented in a view
III port with the same dimensions of the silhouette, but

Tk ' II _<k! nc  with ones in the neighborhood of a hole, and zeros
otherwise. The locations and degree of metal bends can

(I * Tk), l!k:nc} be represented in a three dimensional "Hough Space",
where I is the current input vector, Tk is the kth  where the first two axis code the slope and intercept of
memory template, nc is the current number of the bend line, while the third axis codes the bend angle.
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In this case, each bend line would be represented as a sophisticated techniques are available, it is the low
single point in a 3D space. If the angle of the bend is conversion overhead and basic simplicity of run-length
not important, then a bend line could be represented encoding that makes it ideal for this application. A run-
directly in a viewport as with the silhouette. This is length algorithm returns a list of integers that represents
shown in Figure Ic. the lengths of runs of consecutive l's and/or O's in the

binary vector. Efficient linear algorithms exist to
compress data into this format. With the assumption
that the starting value of the list is known, the fact that
the l's and O's alternate allows this list to be stored
without the actual values of the runs.

(() )(C) 00000011111111111111111000000001111111111110000

Bkwy vaw

Figure 1. Three representations of features of ai Is
design. (a) is the silhouette of the part, (b) is the *n :.
location of fastener holes, and (c) is the location of
bend lines. Each of these are converted into linear
binary vectors for input to the neural network. Figure 2. An example of a short binary vector. The

run-length code C for this string Is {6,17,8,12,5) with
byte compression ratio of 8/5. This ratio assumes that

The limitation of this type of sparce representation is in the uncompressed vector is stored in compact form in
the explosion of the length of the binary input vector. 8-bit bytes, and that the maximum length of a single
The resolution of the pixelization determines the overall run is 256. The bar above the vector symbolically
length of the binary input vector. The resolution also indicates the location of strings of O's and l's, and is

used to explain the compressed algorithms later in thedetermines the accuracy of the object representation, and text.
if too coarse it will strongly affect the way the network
groups the designs. Even though the bits in the binary The ART-I simulation used for this research was
vector can be "packed" into 32 bit integers for storage modified to include compressed versions of the vector
and manipulation, when many clusters are formed, the operations described above. The input patterns are
total size of the vectors will tax the limits of small compressed before presentation to the network. The
engineering workstations. memory templates are created and updated directly in

compressed form. Data compression ratios and
In our normal simulation of the ART-i algorithm, the execution times were measured for both compressed and
vectors and templates are in binary form before the dot uncompressed versions of the simulations. In these
products, norms, and conjunctions are calculated. A experiments, compression ratios of up to 20 were found
practical group technology parts retrieval system might using 2-D CAD designs. In addition, speedups of the
be expected to require many ART-I modules running ART-i algorithm of upwards of 100 were measured for
with many hundreds of memory templates each. A 3-D CAD designs. These improvements are important
compounding fact is that the range of engineering to the developers and end-users of these neural retrieval
workstations on which the system might possibly be systems because it makes deployment of practical
deployed include relatively low-end PCs. The following applications on existing engineering workstations
section briefly introduces a modification to the ART-1 possible.
algorithm that allows direct operation on data
compressed input vectors and memory templates. Neural Database Architecture

For the group technology applications considered so far
A Compressed ART-i Algorithm in our research group, a generic system architecture is
There are significant advantages to applying data emerging. This can be seen in Figure 3. The basic
compression techniques to the binary representations components are 1) CAD System Interface, 2) Parser, 3)
used in this ART-i system. First of all, there is no Representation Generator, 4) Neural Network
random "noise" in designs, making accurate compression macrocircuits, and 5) User Interface.
possible. Second, a bit map of a design will quite
frequently have long strings of l's and O's as the material In a group technology system the lists of parts which
of the part is transited, producing potentially large data form each cluster are maintained during training. When
compression ratios. Finally, the neural network the user queries the system with a new design, that
simulation will have fewer actual numbers to process design is presented to the network and the list of parts
per part, reducing the execution times. which previously grouped in the same cluster are
In this work, standard run-length encoding is used. For returned.
an example, see Figure 2. Although other more
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The functionality of the Parser is to extract the salient structure of the macrocircuit strongly effects the range of
information from the CAD System Interface. Typically, functionality provided by the neural database. (See
this interface is an ASCII data file containing the Figure 6 for a diagram of the macrocircuit used in the
constructive description of the part. It may also be a demonstrations system discussed in the following
raster file of an image. The extracted information might section.)
be a list of lines and arcs defining the border of the part,
the location of fastener holes, or a bit map of the design.
Unfortunately, the structure of the data files usually
depends on the style and consistency of the user of the
CAD program, making multiple searches of the data -Lve3
necessary. Sometimes information on a substructure of * * * .
the part will be distributed in many locations in the
CAD file. The Parser is the only component specific to
the brand of CAD program being used, and must be LJ . .. e2

redesigned for each new system.

---------- ' 4V I

CAD ---- M~W~ftE" Figure 4. An example of a ART Tree database
structure. Each cube represents a macrocircult of
ART-1 neural networks to provide "don't care" option
to query.

Another user requirement might be the ability to vary
the degree of the family discriminators, allowing on-line
specification of the closeness of a match in the search
for similarity. This can be implemented with a
hierarchical abstraction tree of macrocircuit modules, as

Figure 3. A schematic of the components of a neural shown in Figure 4. Each module in the tree is trained
database syrtem for group technology. The User separately with the input patterns associated only with
Interface provides control of the level of abstraction of that branch cluster, and each module receives the
recall in the network. complete set of representations. The modules at the top

of the tree have the greatest discrimination, while the
The Representation Generator converts and compresses one at the bottom has the least. When a query occurs,
the information extracted by the Parser into a form the lowest module places the design into one of its
usable by the neural network. This includes operations families or clusters. Families at this level represent the
such as the generation of the 2D viewports, generating most general abstraction of the possible set of designs
silhouettes by filling in boundaries, computing the stored in the system. When a winning cluster is selected
location of points in Hough spaces, and the compression at the first level, the module up the branch of the tree
of each representation into run-length codes. This associated with this group is activated. This module
component is independent of the type of CAD program then places the design into one of it's clusters, and the
used in design generation, but will vary depending on process repeats. The user selects the level of abstraction
the types of representations required to capture the at retrieval time according to the current requirements.
significant features that best discriminates the design
families. An Application to Marker Retrieval

As an illustration of the types of systems currentlyThe structure of the ART-I Macrocircuits component is under development, more detail will be given on the

also dependent on the representations, and will vary marker design retrieval system. Figure 5 gives two

according to requirements of the database users. A markers that are similar in size and textual content, but

macrocircuit is a collection of neural network modules, differ in the graphical information. It is possible that
connected together in a larger and more functional dfe ntegahclifrain ti osbeta

nected Toeheear ncessarif a r ea ore ftiona only one of these need be saved. Often new markers are
network. These are necessary if a network is to give the needlessly designed because no retrieval system exists to
user a range of query options. For example, the user aid the designer. The markers designs are produced andmay choose to query the database for designs that have strdo shes fparbun in oums

the same general size, represented by a bounding stored on sheets of paper bound in volumes,

rectangle or box. After limiting the choices of families complicating electronic access.

by this step, the user may next want to discriminate For this demonstration, approximately 50 markers were
according to the the specific shape of the object. The digitized on a Macintosh optical scanner to capture the
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graphical shape. These images were then converted to entered into a database could be used prior to graphical
raster file bit maps for input to the neural network. In grouping.
addition, the cut-out die size and textual content of the
marker were recorded with the image. Figure 6 gives the This demonstration system mentioned above is
details of how sets of ART-1 modules are connected to implemented in the C language on Sun SPARC
implement the database system. workstations. Training for this small system takes less

than ten minutes, and retrieval time for a new design is
The detailed structure of this macrocircuit evolves during less than a second. The ART Tree structure has not
the learning process, where a training set of marker been implemented for this application. Figure 7 shows
designs are repetitively presented to the network. The a screen-dump of a trained network.
die size and textual information are used to form
families. When a new size/text family forms, an ART- I A neural network grouping system for airplane markers
module is created to cluster the graphics associated with could be used in a number of ways. The existing
this family into subfamilies of similar shapes. In Figure markers could be grouped and then the groups examined
6, the shape representation is considered last by the by a human to locate and purge duplicate markers. This
highest ART-I module. would save money in maintenance. Also, such a system

could be used for group technology to return the closest
One advantage of this sort of hierarchical structure is existing markers to a new one being designed. This
that it could be easily incorporated into a traditional would help avoid the future proliferation of duplicate
database system. The categorization that occurs before markers. Finally, additions to traditional databases could
presenting the graphical images to the neural network be constructed which would graphically group the
could be performed by querying an existing database. markers returned to the user in response to a query.
Thus, any attributes of the markers that have been

NO SMOKING NO SMOKING
IN LAVATORY IN LAVATORY

Figure S. Two markers that are the same size and have the same message, but contain different
graphical Information.
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Figure 6. The macrocircult of ART-i modules that implements the markers design retrieval system.

SI-

Nao Fume F17[1
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Figure 7. A screen dump from a Sun SPARCI simulation of the sheet metal floor stiffener retrieval
system. The three representations of shape, holes, and bends appear In vlewports across the top of the
Image. The set of silhouettes In the upper middle of the figure are the memory templates for the shape
ART-I module. The lower set of rectangular windows show the results or the holes and bends modules
for each shape cluster.
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Conclusions proceedings of Northcon/88, Vol II, Western
Artificial neural networks have been applied to design Periodicals Co., Oct. 1988.
retrieval. ART-I networks are used to adaptively group
together similar engineering or graphical designs. The 4. Healy, MJ. and Caudell, T.P., "On the Semantics of
information used to group is coded into a binary Pattern Recognition Neural Networks", in the
representations which, in their basic form, amounts to proceedings of Northcon/88, Vol II, Western
bit maps of design descriptors. We have used this Periodicals Co., OcL 1990.
technology to build neural databases for the retrieval of
two and three dimensional engineering designs. We
have discussed in detail a feasibility level system that
learns to group airliner markers into families, and then
to recall the family when presented a similar marker.
The input to these networks may be generated directly
from CAD designs of the parts or other sources of object
features.

An addition to the algorithmic form of ART-i was
introduced that allows it to operate directly on run-length
encoded vectors, and to generate compressed memory
templates. When compared to the regular uncompressed
algorithm on real engineering designs, the performance
of this compressed algorithm demonstrated a significant
savings in storage of the input vector and the memory
templates. A surprising result was the size of the speed
up in execution of the simulation on larger input
vectors. Issues of object scale, orientation, and
reflection have not been discussed here, although they
have been dealt with in the working systems. The code
for a system that groups aircraft floor stiffener sheet
metal parts has been transferred to a PC based
engineering workstation for beta testing. The application
of neural networks to group technology is of large
practical value to industry, by making it possible to
avoid duplication of design efforts and save many down
stream costs.
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Abstract alternative approach [Fung and Shachter, 19911. Both

This paper discuses multiple Bayesian networks repre- schemes employ asymmetric independence to ease the

sentation paradigms for encoding, asymmetric indepen- elicitation and improve the quality of probabilistic mod-

dence assertions. We offer three contributions: (1) an in- els.

ference mechanism that makes explicit use of asymmetric This article offers three contributions: (1) an infer-

independence to speed up computations, (2) a simplified ence mechanism that makes explicit use of asymmetric

definition of similarity networks and extensions of their independence to speed up computations, (2) a simplified

theory, and (3) a generalized representation scheme that definition of similarity networks and extensions of their

encodes more types of asymmetric independence asser- theory, and (3) a generalized representation scheme that

tions than do similarity networks, encodes more types of asymmetric independence asser-
tions than do similarity networks.

Introduction These contributions address problems of knowledge
representation, inference, and knowledge acquisition. In

Traditional probabilistic approaches to diagnosis, classi- particular, Section 2 describes Bayesian multinets and
fication, and pattern recognition face a critical choice: how to use them for inference, Section 3 describes knowl-
either specify precise relationships between all interact- edge acquisition using similarity networks and how to
ing variables or make uniform independence assumptions convert them to Bayesian multinets, Section 4 extends
throughout. The first choice is computationally infeasi- these representation schemes to the case where hypothe-
ble except in very small domains, while the second, which ses are not mutually exclusive and section 5 summarizes
is rarely justified, often yields inadequate conclusions, the results. We assume the reader is familiar with the

Bayesian networks offer a compromise between the two definition and usage of Bayesian networks. For details
extremes by encoding independence when possible and consult [Pearl, 1988[.
dependence when necessary. They allow a wide spectrum
of independence assertions to be considered by the model Representation and Inference
builder so that a practical balance can be established be-
tween computational needs and adequacy of conclusions. Bayesian Multinets

Although Bayesian networks considerably extend tra- The following example demonstrates the problem of rep-
ditional approaches, they are still not expressive enough resenting asymmetric independence by Bayesian net-
to encode every piece of information that might re- works:
duce computations. The most obvious omissions are A guard of a secured building expects three types of
asymmetric independence assertions stating that vari- persons to approach the building's entrance: work-
ables are independent for some but not necessarily for ers in the building, approved visitors, and spies. As
all of their values. Such asymmetric assertions cannot a person approaches the building, the guard notes
be represented naturally in a Bayesian network. Sev- its gender and whether or not the person wears a
eral researchers observed this limitation, however, until badge. Spies are mostly men. Spies always wear
recently no effort was made to remove it. badges in order to fool the guard. Visitors don't

Similarity network paradigm is the first major effort wear badges because they don't have one. Female-
towards the r "resentation of asymmetric independence workers tend to wear badges more often than do
[Heckerman, 1 ,90[. Contingent influence diagrams is an male-workers. The task of the guard is to identify

the type of person approaching the building.
'This paper is reprinted from the poceedings of the 7th

Uncertainty in Artificial Intelligence conference, Los Angeles, A Bayesian network that represents this story is shown
California. in Figure 1. Variable h in the figure represents the cor-
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rect identification. It has three values w, v, and s re- tation requires 11 parameters while the representation
spectively denoting worker, visitor, and spy. Variables g of Figure 2 requires only 9. This gain, due to asym-
and b are binary variables representing, respectively, the metric independence, 'could be substantially larger for
person's gender and whether or not the person wears a real-sized problems because the number of parameters
badge. The links from h to g and from h to b reflect the needed grows exponentially in the number of variables,
fact that both gender and badge-wearing are clues for whereas the overhead of representing multiple networks
correct identification, and the link from g to b encodes grows only linearly.
the relationship between gender and badge-wearing. We call the representation scheme of figure 2, a

Unfortunately, the topology of this network hides the Bayesian multinet.
fact that, independent of gender, spies always wear Definition Let {u1 ... u,} be a finite set of variables
badges and visitors never do. The network does not each having a finite set of values, P be a probability dis-
show that gender and badge-wearing are conditionally tribution having the Cartesian product of these sets of
independent given the person is a spy or a visitor. A values as its sample space, and h be a distinguished vari-
link between g and b is drawn merely because gender able among the uj's that represents a mutually-exclusive
and badge-wearing are related variables when the per- and exhaustive set of hypotheses. Let A,..., Ak be a
son is a worker. partition of the values of h. A directed acyclic graph

Di is called a local network of P (associated with Ai)
h if it is a Bayesian network of P given that one of the

hypotheses in Ai holds, i.e., Di is a Bayesian network of
P(ui ... un jA1 ). The set of k local networks is called a

b g Bayesian multinet of P.'

In the secured-building example of Figure 2,
{{spy, visitor}, {worker}} is a partition of the values of

Figure 1: A Bayesian network for the secured-building the hypothesis node h, one local network is a Bayesian
example. network of P(h, b, g1 worker) and the other local network

is a Bayesian network of P(h, b, gj {spy, visitor}). 2

The fundamental idea of multinets is that of condition-We can more adequately represent this story using two in;each localnewrrpestsadticstuio

Bayesian networks shown in Figure 2. The first net- ing; eahlclnetwork represents a distinct situation
B s nworkents hown ases Fre ers app ng- conditioned that hypotheses are restricted to a speci-
work represents the cases where the person approaching fled subset. Savings in computations and space occur
the entrance is either a spy or a visitor. In these cases, because, as a result of conditioning, asymmetric inde-
badge-wearing depends merely on the type of person ap- pendence assertions are encoded in the topology of the
proaching, not on its gender. Consequently, nodes b and local networks. In the example above, conditional inde-
b are shown to be conditionally independent (node h pendence between gender and badge-wearing is encoded
blocks the path between them). The links from h to as a result of conditioning on h.

b and from h to g in this network reflect the fact that Notably, conditioning may also destroy independence

badges and gender are relevant clues for distinguishing relationships rather then create them iPearl, 1988].

between spies and visitors. The second network repre- However, if the distinguished variable is a root node (i.e.,

sents the hypothesis that the person is a worker, in which Hode ith distingis , vari ionod ie.,

case gender and badge-wearing are related as shown. a node with no incoming links), conditioning on its val-
ues never decreases and often increases the number of in-
dependence relationships, resulting in a more expressive

Spy/Visitor Worker graphical representation. Other situations are addressed

below where the hypothesis variable is not a root nodeh or where more than one node represents hypotheses.

Representational and Computational

b g Advantages

The vanishing dependence between gender and badge-
wearing is an example of an hypothesis-specific indepen-

Figure 2: A Bayesian multinet representation of the dence because it is manifest only when conditioning on
secured-building story.

'A Bayesian multinet roughly corresponds to an
hypothesis-specific similarity network as defined in Hecker-

Figure 2 is a better representation than Figure 1 be- man's dissertation (1990, page 76).
cause it shows the dependence of badge-wearing on gen- 2The conditioning set {spy, visitor} is a short hand nota-
der only in context in which such a relationship exists, tion for saying that h draws its values from this set, namely,
namely, for workers. Moreover, the former represen- either h = spy or h = visitor.
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specific hypotheses, that is, for spies and visitors, but Suppose the guard sees a male (g) wearing a badge (b)
not for workers. The following variation of the secured- approaches the building and suppose the guard doesn't
building example demonstrates an additional type of notice whether or not' the person arrives in a limousine.
asymmetric independence that can be represented by A computation of the posterior probability of each possi-
Bayesian multinets as well. ble identification (executive, worker, visitor, spy) based

on the Bayesian network of Figure 1 simply yields theThe guard of the secured building now expects four chaining rule:

types of persons to approach the building's en-

trance: executives, regular workers, approved vis- P(hJg, b) = K P(h) P(glh)- P(blg, h). (1)
itors, and spies. The guard notes gender, badge-
wearing, and whether or not the person arrives in where K is the normalizing constant.
a limousine (1). We assume that only executives Using the representation of Figure 3, however, the fol-
arrive in limousines and that male and female ex- lowing more efficient computations are done instead:
ecutives wear badges just as do regular workers (to
serve as role models). P(spylg, b) = K P(spy) . P(gispy) -P(bspy) (2)

This story is represented by the two local networks P(visitorlg, b) K P(visitor) P(givisitor).
shown in Figure 3. One network represents a situation P(bvisitor (3)
where either a spy or a visitor approaches the building, P(workerig, b) = K P(worker) P(glworker).
and the other network represents a situation where either
a worker or an executive approaches the building. The P(bg, worker) (4)
link from h to I in the latter network reflects the fact that P(g, blexecutive) = P(g,blworker). (5)
arriving in limousines is a relevant clue for distinguishing
between workers and executives. The absence of this Equations 2 and 3 take advantage of an hypothesis-
link in the former network reflects the fact that it is not specific independence assertion, namely, that g and b
relevant for distinguishing between spies and visitors, are conditionally independent given, respectively, that

The vanishing dependence between gender and the hy- h = spy and h = visitor. Equation 5 uses a subset inde-
pothesis variable h when h is restricted to a subset of pendence assertion, namely, that b and g are independent
hypotheses (worker, executive) is an example of subset of h restricted to (worker, executive}.
independence. Similarly, badge-wearing is independent More generally, calculating the posterior probability of
of h when restricted to {worker, executive), and arriv- each hypothesis based on a set of observations el, ... , em
ing in limousines is independent of h when restricted to is done in two steps. First, for each hypothesis 14, the
{spy, visitor}. 3 probability P(e 1 ,..., emIhi) is computed via standard al-

Subset independence is a source of considerable corn- gorithms such as Spiegelhalter and Lauritsen's (88) or
putational savings. For example, in lymph-node pathol- Pearl's (88). Second, these results are combined via
ogy less than 20% of the potential morphological findings Bayes' rule:
are relevant for distinguishing any given pair of disease P(hile...em) = K p(hi)P(el...ekIhI). (6)
hypotheses (among over 60 diseases) [Heckerman, 1990]. Notably, the computation of Plei ... eklhi) in the first

step uses the local networks as done in Eqs. (2) through
Spy/Visitor Worker/Executive (5) and does not use a single Bayesian network as done

h in Eq. (1). Consequently, when the values of h are prop-
h_ erly partitioned, the extra independence relationships

encoded in each local network could considerably reduce
computations.

b (. 7 ( The parameters needed to perform the above compu-
_ __ ~tations consist, as we shall see next, of the prior of each

hypothesis hi and the parameters encoded in the local
Figure 3: A Bayesian multinet representation of the aug- networks:
mented secured-building story. Theorem 1 Let {ui . . u,} be a finite set of variables

each having a finite set of values, P be a probability dis-
Below we demonstrate these computational savings tribution having the Cartesian product of these sets of

using the simple secured-building example; more say- values as its sample space, h be a distinguished variable
ings are obtained in real domains such as lymph-node among the uis, and M be a Bayesian multinet of P.
pathology. Then, the posterior probability of every hypothesis given

any value combination for the variables in {ul ... un}
3Heckerman coined the terms subset independence and can be computed from the prior probability of h 's values

hypothesis-specific independence in his dissertation. and from the parameters encoded in M.
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According to Eq. 6 above, the only parameters needed idential variables (such as gender, badge-wearing, and
for computing the posterior probability of each hypoth- limousines). In our example, this network would be eco-
esis h,, aside of the priors, are p(v2 ... v,,jh,) where nomics -+ h +- military. Then, use this network to revise
V2 ... vn are arbitrary values of u2 ... u,n (assuming with- the a priori probabilities of the different hypotheses. Fi-
out loss of generality that h = ul). Let Di denote a local nally, construct local networks ignoring a priori factors
network in M, Ai be the hypotheses associated with Di, (as done in Figure 2) and use the resulting multinet with
and hi be an hypothesis in A1. Clearly, p(v2 ... vn Ihi) the revised priors of h to compute the posterior proba-
is equal to p(v2 ... vnl Ihi, Ai) because hi logically implies bility of h as determined by the evidential clues. This
the disjunction over all hypotheses in Ai. The latter decomposition technique works best if a priori factors
probability is computable from the local network Di by are independent of all clues conditioned on the different
any standard algorithm (e.g., (Pearl, 19881), thus, the hypotheses. That is, in situations that can be modeled
former is also computable as needed. El with Bayesian networks of the form shown in Figure 4

where all paths between a priori factors ri's and eviden-
For example, P(glworker, {worker, executive}) is tial clues fi's pass through h.

equal to the probability P(gJ worker) because worker log-
ically implies the disjunction worker V executive. In
fact, P(glworker, {worker, executive}) is also equal to
P(g{ worker, executive}) because g and worker are inde-
pendent given {worker, executive) as shown in Figure 3.
In this example, the needed probability P(glworker) is
equal to the given one P(gl{worker, executive)), how- r2  r3
ever in general, the needed probabilities are computed
via standard inference algorithms.

Overcoming some Limitations h

The multinet approach described thus far is especially
beneficial when the hypothesis variable can be modeled
as a root node because, then, no dependencies are ever (if
introduced by conditioning on the different hypotheses.
However, the hypothesis node cannot always be modeled
as a root node. For example, in the secured-building f3

story, suppose there are two independent reports indi-
cating possible spying, say, for military and economical Figure 4: A Bayesian network where all paths between a
reasons respectively. Such a priori factors for correct priori factors ri's and evidential clues fi's pass through
identification are modeled as parent nodes of h, called, h.
say, economics and military having no link between them
to show their mutual independence. The resulting net-
work in this case is simply economics -* h - military. When a network of this form cannot serve as a jus-

However when h assumes the value spy, an induced tifiable model, another approach can be used instead;
link is introduced between its parents economics and compose a Bayesian multinet ignoring a priori fac-
military; one explanation for seeing a spy changes the tors, construct a Bayesian network from the local net-
plausibility of the other explanation, thus making the works by taking the union of all their links (e.g., the
two variables economics and military be not indepen- union of all links in Figure 2 yields the Bayesian net-
dent conditioned on h = spy. Consequently, an induced work of Figure 1). Finally, add a priori factors to
link must be drawn between the economics and military the resulting network. This approach was proposed in
nodes in the local network for spies vs. visitors to ac- [Heckerman, 1990).
count for the above dependency. This link would not The disadvantage of this method is that in the pro-
appear in the full Bayesian network because economics cess of generating a Bayesian network from a multinet,
and military are marginally independent (they become one encodes asymmetric independence in the parame-
dependent only when conditioning on h = spy). Such ters rather than in the topology of the Bayesian network.
induced links are often hard to quantify and therefore, Consequently, these asymmetric assertions are not avail-
constructing a single local network is sometimes harder able to standard inference algorithm to speed up their
than constructing the full network, as is the case in the computations.
above example. Nevertheless, this approach is still the best alterna-

One approach to handle this situation is to first con- tive for decomposing the construction of large Bayesian
struct a Bayesian network that represents only a priori networks having topologies more complex than that of
factors that influence the hypotheses, ignoring any ev- Figure 4. Such decomposition techniques are crucially
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needed due to the overwhelming details of real-life prob- relationship, however, is included in the local networks
lems. Additional issues of knowledge acquisition are dis- for visitors vs. workers because it helps distinguish be-
cussed below. tween these two hypotheses. The reason for not loosing

needed information is that the three local networks are
Knowledge Acquisition/ Representation based on a connected cover of hypotheses (rather than a

Similarity Networks partition).

Recall the guard that must distinguish between workers,
executives, visitors and spies. In this story, some vari- Spy/Visitor Visitor/Worker
ables do not help distinguish between certain hypotheses.

For example, gender and badges do not help distinguish
between workers and executives, and limousines do not h h
help distinguish between spies and visitors. In richer do-
mains, large numbers of variables are often not relevant
for distinguishing between certain hypotheses.

Unfortunately, the Bayesian multinet approach re-
quires full specification of all variables in each local net-
work even when they are not relevant to distinguish be-
tween the hypotheses associated with that local network.
For example the relationship between b and g is encoded Worker/Executive
in the local network for spies vs. visitors although these
variables do not help distinguish between this pair of hy- h
potheses (Figure 3). Assessing such relationships, in con-
texts where they are not relevant, imposes insurmount-
able burden on the expert consulted as is demonstrated
by the following quote [Heckerman, 1990]:

"When the expert pathologist was asked questions
of the form

Given any disease, does observing feature x Figure 5: A similarity network representation of the
change your belief that you will observe feature secured-building story.
y?

the expert sometimes would reply

I've never thought about these two features at Definition A coverof aset A is a collection {AI, ... , Ak}

the same time before. Feature x is relevant to of non-empty subsets of A whose union is A. Each cover
only one set of diseases, while feature y is only is a hypergraph, called the similarity hypergraph, where
relevant to another set of diseases. These sets the As's are edges and elements of A are nodes. A cover

of diseases do not overlap, and I never confuse is connected if the similarity hypergraph is connected.

the first set of diseases with the second." In Figure 5, {spy, visitor}, {visitor, worker}, {worker,

The solution is to simply include in each local network executive) is a cover of the hypotheses set. This cover is

only those variables that are relevant for distinguishing connected because it is simply a four-nodes chain spy-

between the hypothesis covered by that local network. visitor-worker-executive which, by definition, is a con-
However, by doing so, valuable information for cor- nected hypergraph. The set {{spy, visitor}, {worker,

rect identification might be lost. For example, the rela- executive)) is also a cover but it is not connected. The

tionships between badge-wearing and gender in Figure 3 set {{worker, executive, visitor}, {visitor, spy}} is an ex-

would be lost. To compensate for such losses of informa- ample of a connected cover that is a hypergraph which

tion, additional local networks must be constructed. is not a graph.

For example, the secured-building can be represented Definition Let U = {ul ... u,,) be a finite set of vari-
with three local networks shown in Figure 5 rather than ables each having a finite set of values, P be a probability
two as in Figure 3. One network is used to distinguish distribution having the cross product of these sets of val-
between spies and visitors, another between visitors and ues as its sample space, and h be a distinguished variable
workers, and a third between workers and executives. In among the u2's that represents a mutually-exclusive and
each local network we include only those variables rel- exhaustive set of hypotheses. Let A,,..., Ak be a con-
evant to distinguishing the hypotheses covered by that nected cover of the values of h. A directed acyclic graph
local network. In particular, the relationship between Di is called a comprehensive local network of P (associ-
badge-wearing and gender is not included in the local ated with Ai) if it is a Bayesian network of P assuming
network for workers vs. executives as in Figure 3. This one of the hypotheses in Aj holds, i.e., Di is a Bayesian
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network of P(ul ... u,, jA,). The network obtained from Let Di denote a local network in S, A. be the hy-
Di by removing nodes that are not relevant to distin- potheses associated with Di, and h, be an hypothesis in
guishing between hypotheses in Ai is called an ordinary Ai. There are two cases; either uj is depicted in Di or
local network. The set of k ordinary local networks is it is not. Let Ai, Ai+ 1 ... Am be a path in the similarity
called an (ordinary) similarity network of P. hypergraph where Am is the only edge on this path asso-

For example, the local networks of Figure 5 are ordi- ciated with a local network that depicts uj as a node. If
nary, and together form an ordinary similarity network. uj is depicted in Di, then the path consists of one edge

Notably, hypotheses covered by each local network are Ai which is equal to Am. If uj is not depicted in any
often similar (e.g., spies and visitors), 4 a choice that local network, then ut does not alter the posterior prob-
maximizes the number of asymmetric independence re- ability of any hypothesis and is therefore omitted from
lationships encoded. the computations.

atohipenc (19)hwta ndrLet Dk be the local netowrk associated with Ak for
Heckerman (1990) shows that under several assump- k =i + 1 . .. m and let hix, h,+2 . .. hm be a sequence

tions, if a cover is connected, one can always rem ove from k = ypot eses. uc ta t h 1 Ate- . h .b e e

each local network variables that do not help distinguish of hypotheses such that hk E Ak-i n Ah. Due to the

between hypotheses covered by that local network and definition of similarity networks, since uj is not depicted
yet not loose the information necessary for representing in Dk where k < m, the following equality must hold:

the full joint distribution. These assumptions consist of p(vifv 2 ... vj_ 1 hk-1) = p(v3I1v2 ... v- 1 h;).
1) the hypothesis variable is a root node, 2) the cover
is a graph and not a hypergraph, 3) the local networks Since this equation holds for every k between i + 1 and
are constrained by the same partial order, and 4) the m, we obtain,
distribution is strictly positive. Theses assumptions are p(vjv 2 ... v 3 _ hi) = p(v, ... vy- Im).
relaxed below.

Theorem 2 Let {ul ... u} be a finite set of variables Moreover,

each having a finite set of values, P be a probability dis- p(vjIv2 ... vj- 1 hm) = p(vIlv' ... v1 hm)
tribution having the Cartesian product of these sets of
values as its sample space, h be a distinguished vari- where u ... u are the variables depicted in Dm (a subset
able among the uis, and S be a similarity network of P. of {u2 ... uji}) because, due to the definition of sim-
Then, the posterior probability of every hypothesis given ilarity network, the variables deleted are conditionally
any value combination for the variables in {u, ... u,} independent of vj, given the other variables; they are
can be computed from the parameters encoded in S pro- disconnected from all the other variables in Din. s
vided p(hi) $ 0 for every value hi, of h. Finally,

To prove the above theorem, it suffices to consider p(vjv' .., v hm) = p(vjlv' ... v h,, Am),
the case where h is a root node in all the local net- because h, logically implies the disjunction over all hy-
works of S because, otherwise, arc-reversal transforma- potheses in Am.
tions fShachter 1986] can be applied until h becomes one. The latter probability is computable from the lo-

Also note that since the similarity hypergraph is con- cal network Dm by any standard algorithm (e.g.,
nected, it imposes n - 1 independent equations among [Pearl, 19881), thus, due the three equalities above,
the following n: p(hi) - p(hilAi) "EhEA, p(hj, i = p(v3 Iv 2 . .. vj- hi) is also computable as needed. 0
1.. .n. In addition, E' p(hi) = 1. The values for p(hi)
are the unique solution of these linear equations provided For example, to compute P(g, b, lspy) we use the fol-
p(hi) ) 0 for i = 1...n. lowing two equalities implied by Figure 5: From the

Aside of the priors, the only remaining parameters first local network, P(g, b, llspy) = P(glspy) P(blspy).
needed for computing the posterior probability of each P(llspy) and from the absence of I in the first and
hypothesis hi, are p(v2 .. .vnIhi) where v2 ... vn are ar- second local networks, P(lspy) = P(lworker). Thus,
bitrary values of u2... un (assuming without loss of P(g, b, Ifspy) = P(gspy). P(bspy) • P(llworker), where
generality that h = ul). Due to the chaining rule, all the needed probabilities are encoded in the similar-
p(v 2 ... vnhi) can be factored as follows: ity network. In fact, the proof of Theorem 2 provides

a general way of factoring any desired probability, thus,
p(v2 ... vnlh) = P(v2 1h) • P(v 3 Iv 2 hi)... the full joint distribution P(g, b, 1, h) is encoded in the

p(vnvi .. . v, t' hi). ordinary similarity network of Figure 5.
Similarity networks have another important advantage

Thus, it suffices to show that for each variable uj, not mentioned so far: protecting the model builder from
p(vj v 2 . .. vj- hi) can be computed from the parame- omitting relevant clues. For example, suppose workers
ters encoded in S.

'Geiger and Heckerman (1990) discuss weaker definitions4Hence the name: similarity network. of being irrelevant other than being disconnected.
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and executives often arrive with a smile to work (because is relaxed. We allow several variables to represent hy-
the secured building is such a great place to be in) while potheses, as needed by the following example:
spies and visitors arrive seriously. Such a clue, smile, is Consider the guard'of Section 2 who has to distin-
likely to be forgotten when constructing the local net- guish between workers, visitors, and spies. A pair of
works for spies vs. visitors and for visitors vs. executives people approach the building and the guard tries to
because it does not help distinguish between these pairs classify them as they approach. Assume that only
of hypotheses. However, when constructing the similar- workers converse (c) and that workers often arrive
ity network of Figure 5, which includes a local network with other workers (because they must car-pool to
for distinguishing visitors from workers, smile is more conserve energy).
likely to be recalled because the distinctions between vis- A Bayesian network representing this situation is
itors and workers are explicitly in focus. shown in Figure 6 where nodes h, and h2 stand for the

Redundancy respective identity of the two persons. (The direction of

Basing the construction of local networks on covers of the link between h, and h2 is arbitrary.)

hypotheses raises the problem of redundancy, namely,
that some parameters are specified in more than one lo-hi2
cal network. For example, in Figure 5, the parameter
P(gJ visitor) should, in principle, be specified both in the gi 92

first and in the second local network. This problem is
particularly crucial because local networks are actually
constructed from expert's judgments rather than from a2
coherent probability distribution as implied by the defi-
nition of similarity networks.

One way to remove redundancy is to automatically- Figure 6: A Bayesian network with two hypothesis nodes

translate a similarity network as it is being constructed h, and h 2.
to a Bayesian multinet which is never redundant. For
example, instead of storing Figure 5, we can actually Alternatively, we can represent this example using a
store Figure 3 which contains no redundant information, generalized similarity network, or a generalized Bayesian

The translation is done by the following algorithm. multinet.

Conversion Algorithm Definition Let {ul ... un) be a finite set of variables

Input: A similarity network S of a probability distribu- each having a finite set of values, P be a probabil-

tion P. ity distribution having the cross product of these sets

:A Bayesian multinet of P. of values as its sample space, and H be a subset of
distinguished variables among the ui's each represent-

1. For each ordinary local network L in S: ing a set of hypotheses. Denote the Cartesian prod-

* Add a node for each variable not represented in L. uct of the sets of values of the distinguished variables

" For each added node z, set the parents of x in L by domain(H). Let A 1,..., Ak be a connected cover of

to be the union of all parents of x in all other lo- domain(H). A directed acyclic graph Di is called a com-

cal networks where x originally appeared, excluding prehensive local network of P if it is a Bayesian network

variables that were originally in L. of P(ul ... unlAi). The network obtained from Di by
removing nodes that are not relevant to distinguishing

2. Remove enough local networks from S and enough between hypotheses in Ai is called an ordinary local net-
hypotheses from the remaining local networks until a work. The set of k local networks is called a generalized
Bayesian multinet is obtained, similarity network of P. When A1 , ..., A, is a partition

(A finer version of this algorithm is forthcoming). of domain(H), then the set of k comprehensive local net-
Notably, the user of a similarity network need not works is called a generalized Bayesian multinet.

know about the conversion to a Bayesian multinet which For example, the secured-building story is represented
can be thought of as an internal representation. The in the generalized similarity network of Figure 7. Note,
user benefits from both the advantages of similarity net- H = {hi, h 2} and domain(H) consists of nine ele-
work for knowledge acquisition, and from an inference ments (x, y) where both x and y are drawn from the set
algorithm (Section 2) that uses the Bayesian multinet {w, v, s). A connected cover of domain(H) upon which
produced by the conversion algorithm. Figure 7 is based consists of: {(s, s) (v, s) (s, v) (v, v)},

{(v, v) (w, v) (v, w) (w, w)}, and {(s, s) (s, w) (w, s)}.
Generalized Similarity Networks This cover is connected.

Previous sections assume all hypotheses are mutually ex- Most asymmetric independence assertions encoded in
clusive and are, therefore, represented as values of a sin- Figure 7 were either explained in previous sections or are
gle hypothesis variable denoted h. Here this assumption obvious from the verbal description of the story.
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Like any Bayesian network, local networks possess pre-
Spy/Visitor Spy/Visitor cise semantics in terms of independence assertions and

these can be used to verify 1) whether the network faith-
h, h2 fully represents the domain and 2) whether the input is

91 -*.Gconsistent.
92N Multiple local networks have several advantages com-

pared to a single Bayesian network. The elicitation of
several small networks is easier than eliciting a single

bi 0 full-scale Bayesian network because the expert can focus

his/her attention to particular subdomains, and hence,
provide more reliable judgments. Multiple networks rep-

Visitor/Worker Visitor/Worker resent a domain better because more knowledge about
independence is qualitatively encoded. Algorithms for
finding the most likely hypothesis run faster when using
multiple networks. And finally, the overall storage re-
quirement of multiple networks is often smaller than that
of a single Bayesian network because as independence as-
sertions become more detailed, less numeric parameters
are needed for describing a domain.

Notably, when independence assertions in the domain
are symmetric, a single Bayesian network is preferable.

The challenges remain to 1) devise additional graphi-
Spy Spy/Worker cal representation schemes of salient patterns of indepen-

dence assertions, (2) provide computer-aided elicitation
hprocedures for constructing these representations, andi1 (3) devise efficient inference procedures that make use

92 of the encoded assertions.
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1 Introduction in which the two discrete variables are conditionally inde-

A pendent, and likewise the two continuous variables. With

In a multivariate Gaussian model, the presence of a zero other models for these four variables the graphical rep-
in the inverse variance matrix, or in the partial corre- resentation breaks down, but the hypergraph represen-
lation matrix, implies that the two variables are inde- tation does not. CG models provide some of the most
pendent given the rest. Thus the dependence between exciting applications of graphical modeling; we focus on
variables can be fully represented by a graph, in which the special case of ANOVA, allowing heterogeneous vari-
the absence of an edge implies conditional independence. ances.
This leads to the term graphical Gaussian model, and fur- The Gibbs-Markov equivalence says that if a strictly
ther to theorems concerning the equivalence of the local, positive distribution satisfies the conditional indepen-
global and pairwise Markov properties of the graphical dences induced by a graph (through graph separation),
model. For discrete distributions (or other multivariate then this distribution is the product of functions carried
continuous distributions), this graphical representation is by the cliques of the graph, and vice-versa. Later in the
ambiguous, as the interactions may involve more than paper we will reformulate this equivalence in terms of hy-
two variables at a time. By convention, the presence of pergraphs as follows. We will replace the conditional in-
a clique of k variables in a graph representing a cross- dependences with their equivalent factorizations into two
classified multinomial distribution implies that the joint factors (2-factorizations), and we will introduce the meet
distribution includes a term in all k variables. The dis- operation on hypergraphs, which will allow us to com-
tribution does not in general factorize into (k) pairwise bine several 2-factorizations into one factorization with
components. However, a hypergraph gives a natural, un- n > 2 factors. This has two advantages: First, it will show
ambiguous, representation. C-. - that only certain factorizations can be described through

A hypergraph comprises a set of nodes (or variables) the conditional independences they induce. Second, us-
together with a set of hyperedges. Each hyperedge is ing methods from the theory of relational databases, we
a subset of the set of nodes, with the constraints that give conditions that generalize the equivalence in a weaker
no hyperedge is the empty set (0), and the union of all form to distributions that are not strictly positive.
hyperedges is the set of nodes. Thus, the presence of a
given hyperedge implies a corresponding factor, involving
one or more variables. 2 Conditional Gaussian models
-To demonstrate the flexibility and utility of hyper-

graphs, we consider hypergraph representations of graph- The conditional Gaussian model (Edwards, 1990, Whit-

ical association/conditional Gaussian (CG) models for taker, 1990) specifies the joint distribution of a set I com-

both discrete and continous variables (Lauritzen and Wer- prising k discrete variables and a set Y comprising q con-

muth, 1989), and their generalization to hierarchical in- tinuous variables to be
teraction/CG models (Edwards 1990). Edwards (1990,
p.5) gives the example of two discrete and two Gaussian fiy(i,y) = fj(i) fyi1(yli), (1)
variables and draws the independence graph for the model

________________the product of a cross-classified multinomial distributions

*Supported by Columbia University and Army Research Office fl and a multivariate Gaussian density fylj separately in
grant DAAL03-88-K-0045 to Princeton University each cell i. The moment parametrization of (1) is

tSupported by Office of Naval Research grany N00014-85-K-
0745, Army Research Office grant DAAL03-86-K-0042, and Na- I

tional Science Foundation grants DMS85-03362 and DMS85-04332 f 11 (i, y) fj(i) (2)
to Harvard University (V2/ll)i Iii
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exp ( -f_ T -1 (Y - jAi) (Figure 1) corresponds to a maximal discrete or linear

2xp part in (4). A type 1 hyperedge containing only discrete
variables corresponds to some A? with a maximal. Aand the canonical parametrization is I
type 1 hyperedge containing k' discrete and q' continuous

fjy(i, y) = exp + 1 T  (3) variables corresponds to a q' _< q subvector of 1 where
DiY lal = kV. By convention, the presence of two or more

continuous variables in a type 1 edge does not imply an
where each scalar parameter included in (ai,3i, Di) is association between them. A type 2 hyperedge (Figure 2)
expanded using all subsets of 1, also includes both discrete and continuous variables, and

corresponds to a maximal quadratic part V' . When there

aCI aCI 1 aCI is more than one continuous variable in a type 2 edge, the
pairwise interactions are implied. Type 2 edges must be

These are called the discrete, linear and quadratic parts nested inside type 1 edges, and where type 1 and type 2
respectively. Models are specified by restricting some el- edges coincide, the type 1 edge may be omitted.
ements of the AI, ?1 , and to zero. If the marginality principle were to be dropped, two

Lauritzen and Wermuth (1989) develop CG graphical types of edges would suffice, but the nesting property
association models, for which a graphical representation would fail, and a reduced hypergraph could not be used.
suffices (with the clique convention for discrete variables).
The attractiveness of a graphical association model is
that the complete set of conditional independence state- 3 Analysis of variance
ments can be read from the graph (hence the term inde-
pendence graph). The model is fully specified by these To illustrate the hypergraph representation, and to mo-
ternary statements of the conditional independence of tivate the use of hierarchical interaction models, we turn
pairs of variables given the rest. However, graphical as- to the CG regression setting, that is, the conditional part
sociation models are unnecessarily restrictive. Edwards fyIi(ily) keeping fi(i) fixed. With a single continuous
(1990) gives the theoretical basis for the analysis of con- variable Y and k factors, this is the analysis of variance
ditional independence in hierarchical interaction models. model. Our principal concerns have a practical flavor:
He defines the hierarchical interaction models to be the
CG models that satisfy the marginality principle. Briefly, 1. The set of possible models includes the lattice of 2 k

if A? is not identically zero, then neither is each of Ab for models for the linear part, each multiplied by some1 1

b C a. If the rth element 17? of q? is not identically zero number of models for the quadratic part. How is

than neither are i/t and At for b C a. If the rsth element backward or forward model selection to be viewed as
or I b "local operations" on hyperedges?of 0? is nonzero, then neither are V)?, ilt

,,t , and At for b C a. 2. Graphical models, fit by maximum-likelihood, are

commonly compared using the analysis of deviance.
Hypergraph representation of hierarchical inter- How adequate are the X2 approximations when exact
action models. We demonstrate that hierarchical in- F-ratios are available?
teraction models can be represented using hypergraphs
(although, as will be seen, the quadratic parts cause some 3. Hierarchical interaction models allow unequal vari-
difficulties). In Section 4 we carry across some of the ba- ances to be modeled readily. How important is this
sic properties of independence graphs to hypergraphs. In feature?
so doing, we argue that it is better to emphasize factor-
izations, read directly from the set of hyperedges than 4. In the classical approach to ANOVA, the experimen-

conditional independence statements. In particular, in tal design places restrictions on the models to be se-
modeling data by ANOVA it is natural to think in terms lected. What is the analog for graphical models?

of several overlapping subsets of mutually dependent vari-
ables, each a hyperedge. 5. What useful information is contained in the indepen-

The marginality principle allows us to use the reduced dence structure of fj(i)?
hypergraph, that includes a hyperedge corresponding to
each maximal subset of variables. The hierarchical inter- Example 1. Pilot plant data. Box, Hunter and
action model is especially demanding, and requires that Hunter (1978) give pilot plant data, of chemical yield Y
there are two types of hyperedges. A type 1 hyperedge measured at two replicates of a 2' design, with factors
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Figure 1: ANOVA of pilot plant data using hypergraphs

temperature T, concentration C, and catalyst K. Con- 1. Start with the hypergraph containing the single max-
ventional ANOVA (Table 1) shows that T, C, and TK imal edge {Y, I}.
are significant at 1%.

2. Replace in turn each maximal hyperedge, containing
k' discrete variables and Y, with k' hyperedges each

Table 1. Pilot plant ANOVA containing k' - 1 discrete variables and Y. (This
eliminates the k'-factor interaction.)

DF SS F-ratio P-value
T 1 2116 265 0% 3. Choose the model at step 2 with the minimum de-

C 1 100 13 1% viance difference. If that difference is statistically

K 1 9 1 32% significant, stop. Otherwise, reduce the resulting hy-

TC 1 9 1 32% pergraph and return to step 2.

TK 1 400 50 0.01% Modifications are available when q > 1, and for forward
CK 1 0 0 100% selection, or a stepwise procedure. The backward elimina-
TCK 1 1 0.1 73% tion algorithm can be implemented using a graphical user
Error 8 64 interface (see Figure 1), and then the use of hypergraphs

would eliminate the need for difficult modeling formulaeWe model these data using hypergraphs, with constant (dad 19)adWitkr(90)

variance (t~=1/0,2 , V)? = 0 otherwise). Each hyperedge (Edwards (1990) and Whittaker (1990)).
1 Figure 1 shows backward elimination for the pilot

includes Y and some subset of T, C, and K. We always plant data. The three steps are (1) UL to UR: eliminate
include the complete model for the discrete variables, that TCK interaction (with Y); (2) UR to LL: eliminate CK
is, the hyperedge {T, C, K}, so that the deviance in com- interaction and reduce; (3) LL to LR: eliminate TC in-
paring the fry(i, y) is a comparison of the fyj;(yji). teraction and reduce. Notice that the hyperedge TCK

is shown at UR, but is implicitly included in the models
Backward elimination algorithm, at LL and LR also. The arrows are annotated with the
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P-values from both the analysis of deviance and F-ratios Table 2. Analysis of deviance for dental golds
(Table 1). The two sets of P-values are reasonably close. (The P-value compares each deviance
Each model is also referred to the original model (X2 and to the first, homogeneous model)
X3 respectively). As the design is balanced and complete, Quadratic Deviance Deg.Free P-value
independent tests of the two-way interactions CK and Y 674 119 -
TC are available from conventional ANOVA (Table 1). YM 671 117 27%
Modeling with hypergraphs leads to a hierarchical inter- YD 666 115 9%
action model that includes the K main effect (contrary YMD 651 105 6%
to Table 1). Notice that because the hyperedge TCK is
implicitly present, we may not conclude from Figure 1, Role of experimental design. Just as in the classical
LR that C I KIY. approach to ANOVA, the experimental design limits the

models that can be considered. A k-factor factorial design
without replication includes no (k + 1)-vertex hyperedge.

Example 2. Dental golds data. Hoaglin, Mosteller Model selection by backwards elimination in the dental
and Tukey (1991) and Goodall and De Veaux (1990) in- golds example begins with four three-factor interactions.
dlude extensive analyses of data on the hardness Y of When there is confounding we assume that some

dental gold, produced using three methods M at three terms typically the high order interactions, are zero. For

temperatures T from two alloys A by five dentists D. A erms, t he hio intractions, ar with

mode fo th linax artis JMTD YMD}. igue 2example, the resolution V 25-1 fractional factorial withmodel for the linear part is {YMTD, YMAD}. Figure 2 defining relation I = 12345 confounds 1 and 2345, 12 and
shows hypergraphs with four choices of quadratice part. 345, etc. The maximal model includes (') three-vertex
The analysis of deviance is given in Table 2. The linear
part may be refined further. Each choice in Table 2 is hyperedges (a factorization). The resolution IV 2'-' de-permissible with linear part YMTD, YMA} but the sign with I = 1234 confounds 1 and 234, 12 and 34, etc.
fourth is not with lYTD, YMA}. Setting the three-way interactions and three two-way in-

teractions to zero leaves four maximal models each with

three two-way interactions.
M x In the design of experiments, a preliminary fac-

torization of the variables n.ay be used to decide on an
appropriate design. For example, if it is believed that

T 11o A e the two-way interaction 12 is zero, but the three-way in-
teraction 345 is non-zero, the resolution V design above

I --//may be used with a different initial maximal model in
'M)D the backwards elimination algorithm. In a future paper

we will discuss the relationship between factorization and
M M experimental design in greater detail.

IJJ '~ IFactorizations of the discrete part. Given two dis-
T YIX A I T flr- crete variables A and B each at two level, suppose pro-

I / , portional allocation, that is, fj factorizes. Then it is easy
/ to show that the estimates of A and B main effects are

D
/  

independent (in a main effects only model). More general7 ',=-statements are true: These relate the factorization of fj
to independence statements about /3, the regression coef-
ficients, since var/3 = (XTX)- i, where X is the matrix
of dummy variables.

4 Hypergraph Factorizations

Factorizations in graphical models. Graphical
models are usually defined in terms of conditional in-

Figure 2: Models for heterogeneous variances in dental dependence, and are represented using either directed
golds data or undirected graphs (see for example Whittaker, 1990,

or Pearl, 1988). However, any conditional independence
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statement is equivalent to a factorization of the overall (1990) or Pearl (1988). We give four axioms, which we
distribution (or one of its margins) into two factors. This call the coarsening, projection, substitution, and intersec-
equivalence can be exploited to give a new graphical rep- tion axioms respectively. Let X, Y, Z, W be four disjoint
resentation of conditional independence statements and subsets of variables in U. Writing XY for X U Y, the
the rules that govern them. Such representations are axioms are
based on hypergraphs instead of graphs, which gives them
several advantages: (1) Hypergraphs are mathematically 1. X Il YW I Z X 1L Y I WZ

simpler than the ternary conditional independence rela-
tion. (2) It is natural to consider factorizations involving
more than two factors, but conditional independence does 3. X _L Y [WZ and X _ L LW Z = X IL YW Z
not allow for such a generalization. (3) Factors can be
identified with independent but overlapping subsystems 4. X _L Y I WZ and X IL W j YZ =: X _L YW Z
where the variables outside the overlap are independent,
offering a convenient modeling paradigm. The last axiom holds only if the joint distribution fxywz

We argue that the concept of factorization forms is strictly positive. For completeness, two additional ax-

a more general and more convenient mathematical foun- iomas must be added to the set of four (Pearl 1988). These

dation for the theory of graphical models than does con- are the symmetry axiom, XILYIX =:. YILXIZ, and the

ditional independence. This point of view has been pur- trivial independence axiom, XIL-IZ. Notice also that

sued in Thoma (1989) in a different context and will be Axioms I and 2 provide the converse to Axiom 3, and

the subject of a forthcoming paper by the authors. Axiom 1 the converse to Axiom 4.

Below we will focus on two important aspects of
this idea. First we will show how conditional indepen- Graphical Representation. The conditional inde-
dence relations, respectively their equivalent factoriza- pendence statement X L Y I Z can be represented
tions, can be represented graphically. Secondly we will fo- graphically via its equivalent factorization as in Figure 3.
cus on the description of arbitrary factorizations through If the two factors together cover all the variables under
sets of conditional independence statements. This is thc
content of the Gibbs-Markov Equivalence, a fundamental
result in the theory of graphical models. The equivalence .

holds only for strictly positive distributions. Using ideas ' " I
from the theory of relational databases it is possible to KIi I
extend the equivalence, in a weaker form, to arbitrary -.-
distributions.C 

I

Conditional Independence. Consider the set U =

C V1,..., V} of random variables. To avoid difficulties
with regularity of the underlying measure, and thus to fo- Figure 3: X IL y I Z
cus on the hypergraph representation, we assume that all
variables have finite outcome spaces. However, all prop- consideration (the set U, left side of Figure 3) the factor-
erties discussed below can be extended to very general ization is full. If they cover only a subset (right side of
distributions, including hierarchical invoraction models. Figure 3), the factorization is embedded since this implies
Let X, Y, and Z be three disjoint subsets of variables that only a margin of the overall distribution factors.
in U. Set X is independent of Y given set Z, written as It is possible that fu = fA - fB, where A and
X 1L Y I Z, if fxylz = fx1z' fyz. If X and Y are B are two subsets of U, but A and B do not cover U.
conditionally independent given Z, then there exist twa In this case the variables not in A U B have no influence
functions gxz and hyz, such that fxyz = gxz • hyz. on fu. This leads to a small problem with our graphi-
Here gxz and hyZ are functions that depend only on cal representation, since we can no longer tell whether a
some of the variables, those in X U Z in the case of gxz, factorization is full or embedded by looking at the set of
and those in Y U Z for hyz. We will say that these func- variables covered. Thus, we distinguish the two cases by
tions are carried by their respective sets of variables. Note using a different color or line style to represent embedded
that gxz and hyz are usually not margins of fxvz. factorizations, as shown in Figure 3.

There are a number of well known rules that gov- The conditional independence X IL Y I Z is
ern conditional independence. See for example Whittaker equivalently described through the two sets XZ and YZ,
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which indicate the factors of the corresponding factoriza- Axiom 3 shows that we can replace one factor
tion. The set {XZ, YZ} is called a scheme. The term with a factorization that covers the same variables. One
is borrowed from the theory of relational databases. A of the resulting three factors can then be absorbed and
scheme is equivalent to a reduced hypergraph with two we end up with a two-component scheme again.
(or more) hyperedges. We will use bold capitals, A, B,

to designate schemes.
No conditional independence relation will result

in a scheme where one component is a subset of the other.
The two components of the scheme are always incompa- *

rable. However, we can consider factorizations where one =< I
factor is carried by a subset of the other factor. For ex- 1=-.:k
ample fxYz = fz • fxlI'z. Since it is always possible
to factor in this fashion, from the factorization point-of-
view we need only consider maximal factors, and therefore
the reduced hypergraph. However, additional factors may Figure 6: Axiom 3, Substitution
aid in interpretation, for example main effects in ANOVA
with interactions present.

To formulate Axiom 4 we introduce the following
definitions: If R is an arbitrary set of subsets of U then

Graphical Representation of Axioms. Using fac- W. is its reduction, i.e. the set of maximal elements of R
torizations and their schemes we can represent the axioms (a component is maximal if it is not strictly contained in
given above in graphical form, in the following four fig- another component). The meet of two schemes A and B
ures. The following terminology is convenient: The key of is the set AAB := {AfnB IA E A,B E B}0 . i.e. the
scheme A = {A 1 , A2 } is the set A1 nfA 2 , and sets A1 \A 2 reduction of all intersections of components of A and B.
and A 2 \ A1 are the wings of the scheme. Axiom 4 says that if the distribution is strictly positive,

Axiom 1 says that from a given factorization we we can infer from two given factorizations a new one, the
can derive a new one by moving wing elements to the meet of the given schemes. The two schemes must share
key. 'This simply adds variables to the factors that do not a component to ensure that the meet comprises only two
influence the distribution, components.

ZI

Figure 4: Axiom 1, Coarsening

Axiom 2 says that we can derive a new factor-
ization by clipping elements from the wings of a given Figure 7: Axiom 4, Intersection
one. However, the new scheme will cover fewer variables.
There are simple example showing that we do not derive
valid new schemes if we clip elements of the key. 5 General Factorizations

Gibbs-Markov Equivalence. We now consider fac-
llv torizations that involve more than 2 factors, and, corre-

) _-~.-" spondingly, schemes with more than two components. To
V distinguish the general factorization and schemes from

those involving two factors, we will use the terms 2-
factorization and 2-scheme for the latter. Our overall

Figure 5: Axiom 2, Projection strategy is described in the Introduction.
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The Gibbs-Markov Equivalence, one of the cen- of 2-factorizations? (2) Which sets of 2-factorizations de-
tral results for graphical models, says that for strictly fine a factorization? In addition, we need to know how
positive distributions a set of conditional independence to determine the set of 2-schemes that is equivalent to a
statements (2-factorizations) is equivalent to a factoriza- given factorization, and how to determine the scheme of
tion involving more than two factors. a factorization from a given set of 2-schemes.

Consider the following example. Let f = g • h • k
be defined over the set of variables U = {A, B, C, D, E}.
Let g be carried by margin {A, B}, h by {B, C, D}, and Results. The results differ depending on whether the
k by {D, E}. The distribution f factors into three corn- overall distribution is strictly positive or not.
ponents, but it is easy to derive th- following three 2- If the distribution is strictly positive, i.e. fu > 0,

factorizations simply by multiplying two of the factors: then any set of 2-factorizations (all involving the same set
of variables) combine to give a factorization with at least

f = (g-h)-k two factors. Its scheme is the meet of all 2-schemes of
f = g. (h-k) the given 2-factorizations. Furthermore, for any factor-

ization with a conformal scheme 1 there is an equivalent
f = (g " k) h set of 2-factorizations. The corresponding 2-schemes can

be determined as follows: Divide the components of the
Figure 8 shows the corresp ., Ang 2-schemes. n-scheme into two groups, and determine for each group

the union of its members. The two resulting sets form a

2-scheme. Each possible way of forming two groups will
C C determine a 2-scheme. Some groupings may not yield a vi-

able 2-scheme, and some groupings may yield the same 2-
scheme, but overall they will determine a set, of 2-schemes
whose meet coincides with the scheme of the original fac-

torization.
If the distribution is not strictly positive, i.e.

fu > 0, than any conflict-free 2 set of 2-factorizations
(all involving the same set of variables) can be combined

Figure 8: Derived 2-Schemes into one overall factorization. Its scheme is the meet of
the given 2-schemes, and it is acyclic 3. Furthermore, for

In this particular situation we can reconstruct any acyclic factorization there is an equivalent set of 2-

the original factorization from the three 2-factorizations factorizations. The 2-factorizations can be found using

as follows: First clip the element E from the wing of the the same method as in the strictly positive case.

second 2-scheme, then use the resulting scheme to replace Distributions that are not strictly positive have

the larger component of the first 2-scheme. The result is a support (the set of arguments for which the distribu-

the original factorization. In fact, the third 2-scheme is tion has non-zero probability) that does not cover the

superfluous. Note that this reconstruction is possible even entire outcome space. Such a distribution will not factor

if the distribution is not strictly positive, unless its support factors too. It is therefore not sur-

It is not always possible to proceed as in the ex- prising that the factorization properties of arbitrary dis-

ample. Figure 9 shows an example where it is not possible tributions are closely related to those of sets. The set

to derive any 2-factorizations. case has been studied extensively in the theory of rela-
tional databases, and both, terminology and results, can
readily be extended from the set to the distribution case.
The support of a strictly positive distribution is the entire

IA scheme is conformal if its components are equal to the cliques
of a graph over the same set of variables, or equivalently, if the
scheme is the meet of a set of 2-schemes (Thoma 1989).

2 For a definition of coAffict-free sets of 2-scheme we refer the
reader to the influiential paper by Beeri et al. (1983) and to the

Figure 9: Simple Cyclic Scheme forthcoming paper by the authors, which will give a more detailed
discussion of the issues involved.

3 A scheme is acyclic if there is a triangulated graph over the
We are therefore faced with the following ques- same set of variables, such that the cliques of the graph coincide

tions: (1) Which factorization can be replaced by a set with the scheme components.
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outcome space, and these distribution are therefore not
subject to the restrictions that apply to sets.
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TESTGRAF: Some Graphics Tools for the Analysis of
Examination Data

J. 0. Ramsay
Department of Psychology, McGill University

Montreal, Quebec, Canada

1 Objectives more efficient than the traditional percentage
correct estimates.

TESTGRAF is a program designed to graph TESTGRAF also has a module aimed at
the performance of examination questions in showing examinees how much information is
a way meaningful to statistically naive exam- provided by the exam about their ability or
iners. It was developed with the college or proficiency in the subject being tested.
university instructor in mind who has given a
multiple choice exam to a class of a hundred
or more students, and who wants to evaluate 2 Characteristic Curves
test items with a view to

* deciding whether or use or reject an item The central concept in the modern statistical
in determining the final grade, theory of tests is the item or option charac-

teristic function, shown in Figure 1. Ability
* getting information that will help in the is viewed as a latent variable which indexes

rewriting of items for future use, the probability that a specific answer or op-
tion will be chosen among those presented for

* identifying items which might be added to a given test item. The function Pi,.(0) plot-
a pool for constructing subsequent exams, ted in Figure 1 for each of the five options for

" determining aspects of student perfor- Item 1 is the probability that option m will

mance on the test as a whole. be chosen for item i by examinees at or near
ability level 0.

The program also generates examinee abil- In Figure 1 the solid line indicates the prob-
ity estimates which are optimal in the sense ability that the option is chosen that is des-
that they use the subtantial information pro- ignated by the examiner as correct, and as
vided by which wrong options were chosen one might hope, it shows that examinees with
for incorrectly answered questions. The abil- low ability have a small probability of getting
ity estimates are also optimal in a statisti- the item correct, but that this probability in-
cal sense (maximum likelihood conditional on creases rapidly over ability values 55 to 70, af-
item characteristics), and thus automatically ter which the probability of chosing the correct
weight test items by their efficiencies. These answer is very high. The dashed curves show
ability estimates are therefore substantially the corresponding probabilities that the vari-
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if = g(O), then defining P* = P o g- I im-
Iem 1 plies P*() = pfg-l( )] = P(9). 'INis means

that the essential task is to estimate the rank
I I ~i 1 ii of examinee a,a = 1,...,N, after which the

C _ability values 0. can be assigned by any con-
D I venient order-preserving transformation of the

N ranks.
-I Consequently, ability values are assigned as

I I I follows:

I I I Step 1: Use some statistic T. to order ex-
JI I I I Iaminees. By default TESTGRAF uses

I . I I the conventional proportion correct to do
N_. - I. " Xthis, but TESTGRAF also permits the
I ' user to input any set of values, includ-

- ing the result of some other type of scor-

30 40 50 60 70 80 90 100 ing of the exam, results from other ex-
ams, or ability estimates from a previous
TESTGRAF analysis.

Figure 1: Option Characteristic Curves Step 2: Assign the quantiles of the standard

Gaussian distribution 0. = Z. to the or-

ous wrong options will be chosen, and we ob- dered examinees. Since most examination

serve that option 2 is especially popular with administrations tend to produce approx-

the weakest examinees, while option 3 tends imately Gaussian exam scores, this per-

to attract those with high ability and hardly mits the ability values to roughly reflect

anyone chooses option 5. The 5%, 25%, 50%, the statistical properties of familiar exam

75%, and 95% quantiles of the actual distribu- scores.

tion of percentage correct (the traditional and
usual scoring scheme) are indicated by the ver- 4 Estimation of Pm(0)
tical dashed lines. Vertical bars on the correct
answer curve show 95% pointwise confidence The option characteristic function is estimated
limits for this function. by kernel smoothing of the bivariate relation-

ship between ability 0. and the binary variable
yi,a taking the value 1 if examinee a of abil-

3 Ability 0 ity 0a chose option m for option i, and zero
otherwise. Kernel smoothing with Gaussian

It should be appreciated at the outset that otherwise. aton we ig i Gass ian

the latent variable 0 designed to capture uni- Nadaraya-Watson weights is employed, so that

dimensional variation among examinees in

knowledge, proficiency, or ability is not an in- Pm(O) = aU'Za(0)yir

dependent variable, but rather an index for a - a wo(0)
family of Bernoulli probability distributions, where
As such it is only defined to within an arbi-
trary order-preserving transformation g, since w.(O) = exp -((0. - 0)/hJ2 /2.
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Since the number of examinees N may num-
ber in the thousands, the Fast Fourier Trans- Examinee 2
form (HMirdle, 1987) is used to keep the number .
of calculations to O(N + M log M), where M
is the number of equally spaced values of 0 at
which the functions Pim are to be evaluated. 0

Extensive experience indicates that the
bandwidth parameter h may be set to N - 11 '
in general, although the user can override this
default. However, since a constant bandwidth ='
tends to be somewhat inefficient when the in- C;
dependent variable is not equally spaced, and 0
since Gaussian quantiles become sparse in the c CY
tails, this first smoothing step tends to pro- o6
duce rather variable curve values for 101 2.
Consequently, a second smoothing step is then Q.
used: 020 30 40 50 60 70 80 90 100

Per Cent Correct

Step 4:
The estimated function values Am(O) are Figure 2: Relative Credibility Curves
now smoothed over the M equally spaced
values of 6 using the variable bandwidth unity, and are referred to as relative credibility

h* = h exp(0 2/8)/2.0. curves. Figure 2 shows an example. For exam-
inee 2 taking a 100-item test, we see that the

Finally, most instructors are familiar with most likely ability value is 61%, even though
percentage correct as an indicator of abil- the observed percent correct is only 56% (in-
ity rather than the admittedly artificial stan- dicated by the vertical dashed line). The dis-
dard Gaussian values. Consequently, indicat- crepancy is due to the fact that the maxi-
ing the curve for the correct option by Pic, mum credibility curve estimate takes account
the transformation 17(0) = i Pc(O), which of wrong option choices and of the efficiency of
is nearly certain to be strictly monotonic, in items answered correct, and hence uses more
effect transforms Gaussian abilities into the information than simply counting correct an-
expected number of correct items, and, when swers. The curve also indicates, by the two
reexpressed as a percentage, tends to be more dashed lines under the curve, that about 95%
intuitive for most instructors, of the posterior probability falls between 56%

and 68%.

5 Credibility Curves for 0 6 PCA Display
TESTGRAF can also plot the posterior den-
sity function for ability 0 for selected exami- As a summary display TESTGRAF shows
nees, conditional on the estimated option char- each correct option curve 5iA(O) plotted at a
acteristic curves. For clarity of plotting, these position defined by the principal components
curves are normalized to have a maximum of scores for ., principal components analysis of
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function 1(0), defined as the expected Hessian
with respect to ability 0,

_)[aP(,)/O]2

I(0) = Ez [E P- (0)8]
(i M

This function indicates the amount of informa-
tion about 0 provided by the test for each level
of ability, and can be used to show the ability

-- .-- ranges to which the test tends to be "tuned".
ZThe program can also create a file contain-

ing the maximum likelihood estimates of abil-
E ity for each examinee. These can be used( ~to score the exam, and can also be input to

S -TESTGRAF to provide a more efficient basis
for ranking examinees.

'-90 -70 -50 -30 -10 10 30 50 70 Finally, TESTGRAF can create a file of
Component i commands which are subsequently processed

by another program, TESTLASR, to produce
Figure 3: Principal Components of Correct Postscript commands for laser printer hard
Option Curves copies.

The program and documentation are avail-
curve values. In this analysis, the M values of able from the author. A small fee is requested
O used to plot the curves play the role of the to cover the cost of reproduction and distribu-
variables in a conventional analysis, while the tion. A more complete discussion of technical
cases or replications are the items. Curve val- aspects of TESTGRAF can be found in Ram-
ues are weighted by the inverse of pointwise er- say (1991).
ror variances in computing the cross-products
matrix on which eigcnalysis is performed. 8 References

Figure 3 shows a display for a 100-item test.

Here we see that the very difficult items an- Hairdle, W (1987). Resistant smoothing us-
swered correctly by very few examinees are ing the fast Fourier transform. Applied
clustered at the lower left, while the extremely Statistics, 36, 104-111.
easy items are found at the lower right. Items
with flat or even descending correct option Ramsay, J. 0. (1991). Kernel smoothing ap-
curves show up at the lower edges of the plot, proaches to nonparametric item charac-
while steeply increasing, and hence highly ef- teristic curve estimation. Psychometrika,
ficient, items are found in the upper regions. To appear.

7 Other Results

TESTGRAF also can plot other useful func-
tions. One of these is the test information
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A GRAPHICAL DISPLAY FOR

CHOOSING A TRANSFORMATION

Patrick J. Burns*
92- 19522 Statistical Sciences, Inc.

1700 Westlake Ave. N., Suite 500
Seattle, WA 98109

1 Abstract Carroll (19. 1982), and nonparametric transformations
are explained ii. Hastie and Tibshirani (1990).

There are three primary reasons to transform data: lack An advantage of the display being introduced is that it
of symmetry, nonconstant variance, and interaction be- shows the effect of transformation on each of the criteria
tween factors. We present a display that has separate individually. See Sampson and Guttorp (1991) for an
graphics designed to diagnose each of these conditions, example in which it is desirable to attain symmetry and
The user is thus free to weigh the importance of each of constant variance without destroying interaction.
these three criteria for the problem at hand, and then to
choose the transformation that seems most suitable. As
is the practice of many data analysts, this system uses 3 Symmetry
only a few select transformations rather than transfor-
mations to arbitrary powers. Symmetry is diagnosed graphically by producing a plot

Although this system is demonstrated with data from based on the residuals from the fit for a particular trans-
designed experiments, it may also be used for regression formation. As is done in the other plots, the residu-
problems ... als from a robust fit are used by default, but the least

KEYWORDS: robustness, symmetry, running scale squares residuals may optionally be used.
estimation. Let r(,) be the ith order statistic of the residuals scaled

by the (Gaussian-consistent) median absolute deviation,
let n be the number of residuals and let M be the median

2 Introduction of the scaled residuals. For each i between n/2 and 1,
the quantity

Transformation can often achieve the assumptions im-
plicit in a regression or other estimation problem. Such (r(i) + r(n.i))/2 - M
assumptions include: the distribution of the errors is
symmetric (or Gaussian), and the variance is constant. is plotted versus the value of i. If the distribution is

At times a transformation can also produce a more par- symmetric, this will tend to be a fiat line at zero.
simonious model. Since the points in this plot are dependent, the sym-

In the present paper we use the power transformations metry plots typically show a curve even when samples
of Box and Cox (1964). This family of transformations, come from a symmetric distribution. It thus becomes im-
which includes the logarithm, embraces those most com- portant to have a minimum range that the y-axis spans.

monly used. We also use robust estimation to ensure A glance at the asymptotic distribution of the points in
that the results are not unduly swayed by a few outliers, the plot (Stuart and Ord, 1987, p.452) and the inspec-

For background on transformations, see chapters 4 and tion of plots for several sample sizes and distributions led

8 (written by Emerson and Stoto) of Hoaglin, Mosteller to forcing ±4/V/7 to appear in the plot (a dashed line

and Tukey (1983). Also, the Box and Cox (1964) pa- is drawn at these two values). When several points fall
per (and its discussion) contains many interesting corn- outside the dashed lines and they form a definite curve,

ments. Robustness of transformations is discussed in then asymmetry may be assumed.
The plot described above is similar to plots proposed

*Research supported by NSF grant ISI 88-61156 by several people; these are reviewed in Fisher (1983).
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4 Homoscedasticity try plot and parsimony plot. The allowable transforma-
tions are square, identity, square root, cube root, loga-

To diagnose heteroscedasticity, we plot running scale es- rithm, inverse square root and inverse. An implementa-
timates of the residuals versus the fit. The running scale tion of the display was made in S-PLUS.
estimate sorts the fitted values into ascending order. A
certain fraction of the data enter into the estimation at oAll four plots are viewed for a single transformation, or
each step (we have used one-half in the examples). The one type of plot is viewed for up to four transformations.
location for a step is considered to be the mean of the In preparation for the display, the model is fit for each
fitted values that are being used. Both the standard transformation both with least squares and with a robust
deviation and a robust scale estimate of the residuals technique. For the examples, the L1 solution was used.
(corresponding to the fitted values used) are computed This has a high breakdown point for balanced designs,
at each step. The robust estimate that is used is the but moderately low efficiency at the Gaussian model. A
A-estimate of scale based on the bisquare that has an different algorithm should be used for the general regres-
efficiency of 80 percent at the Gaussian distribution, see sion problem since leverage becomes more of an issue. A
Burns and Martin (1991). high-breakdown, high-efficiency algorithm is preferred.

The test of the null hypothesis that the residuals are The user may also choose whether to use the robust
homoscedastic is the Spearman rank correlation test of residuals (the default) or the least squares residuals.
the fit versus the absolute value of the residuals. This
test was proposed by Horn (1981).

5 Parsimony 7 Example

In designed experiments it is possible to make plots of
the interaction of two factors; such plots were not chosen We use the poison data discussed in Box and Cox (1964),
for two reasons: simplicity and generality. Since there and in many subsequent papers on transformation. This
can be a great number of pairs of factors (not to men- dataset consists of 4 observations on each combination
tion triples and so on), the display of interactions is a of 3 poisons and 4 treatments. The parsimonious model
complicated task best suited to a specialized procedure. that is used is the additive one - the response is modeled
Additionally, the general regression problem is not of- as poisons plus treatments.
ten thought of in terms of interactions. By producing a
different plot, both designed experiments and general re- Figure 1 shows the display for the response in the orig-
gression problems can benefit from the same set of plots. inal units. There is clearly non-constant variance, andWe selected a barchart that tells how well a simple unevenness of the bars in the parsimony plot indicates

We sleced barhar tht tels ow ell siple that there is a problem with non-Gaussian errors. Both
(user-specified) model does. For both the least squares that hr syamproblem dwth n-asian erros Bot
and the robust fit there is both a standard and a robust the plot for symmetry and the "residual versus fit" plot
estimate of the fraction of variability eyrhiined. The indicate that there is not symmetry. When the least

standard method is the fraction of the sum of squares squares residua,. are used, there is slightly less indica-

explained by the model. The robust method uses a r- tion that a transformation is needed; the symmetry plot

estimate of scale based on a Huber function with tuning is especially degraded.

constant 1.7 (Burns and Martin, 1991). Let r denote Figure 2, using the inverse of the response, is close
this scale estimate with the median used as the location to the ideal. The fraction of variability explained is
estimate, and let y and r denote the response and the much higher and virtually the same on all four bars.
residuals, respectively. Then the fraction of variability The symmetry plot is bent down slightly, indicating that
explained is the inverse transform could be too strong. The running

2 ' scale still has some tendency of a positive slope, which
maxr)1 - would indicate a transformation that is not quite strongI Tr(Y),I0J 

enough.

Symmetry plots for four transformations are shown in
6 The Display figure 3. Only the plot for the identity transform shows

a definite trend - the other three plots are indicating no
The ingredients of the display are the four types of plot or very slight asymmetry. The inverse square root seems
- "residual versus fit", heteroscedasticity plot, symme- to be close to the optimal transform for symmetry.
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Survival.time
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P-value, constant scale: 0.007 Fraction of Variability Explained

CR 0.795

0.35 0.40 0.45 0.50 0.55 LS fit Rob. fit LS fit Rob. fit
SS SS Rob. scale Rob. scale

Figure 1: Poison Data, Original Scale

8 Discussion the Royal Statistical Society, Series B 42 71-78.

Transformation is a common data analysis task. With Carroll, R. J. (1982). Two examples of transformations
the graphical display introduced in this paper a data when there are possible outliers. Applied Statistics 31
analyst can quickly decide on an appropriate transfor- 149-152.
mation or see that transformation will have little effect Fisher, N. I. (1983). Graphical methods in nonpara-
on the analysis. metric statistics: a review and annotated bibliography.

The types of plots presented may also be used individ- International Statistical Review 51 25-58.
ually to explore data even when transformation is not
being considered. In particular, the plot for symmetry Hastie, T. J. and Tibshirani, R. J. (1990). Generalized
presented here is more usable than those previously pro- Additive Models. Chapman and Hall; London.
posed because of the additional lines that indicate the Hoaglin, D. C., Mosteller, F. and Tukey, J. W. (1983).
significance of a curve in the plot. Understanding Robust and Exploratory Data Analysis.

Wiley; New York.

9 References Horn, P. (1981). Heteroscedasticity of residuals: a non-
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Burns, P. J. and Martin, R. D. (1991). One-sample ro- mations and tests of environmental impact as interaction
bust scale estimation in contaminated models. (in prepa- effects. American Statistician 45 83-89.
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to be compatible with both Kendall's r and
Graphical methods are developed for frequency Spearman's p. Hence, for n>4, the problem of

distributions of fully ranked data with pseudoranks. visualization of points on a polytope in higher
The proposed graphical techniques use permutation dimensions must be addressed. One approach to this
polytopes, and are compatible with both Spearman's problem is to explore a higher dimensional polytope
p and Kenmdall's 7. The problem of visualization in by examining its three and four dimensional faces.
higher dimensions is also addressed. By defining a permutation polytope as the solution to

a finite set of linear inequalities, all of the faces can be
1. INTRODUCTION characterized. In particular, it is shown that all two-

"-Graphical methods are critically needed to dimensional faces are combinatorily equivalent to
display frequency distributions for fully ranked data. either squares or hexagons, and all three dimensional
Fully ranked data occur, for example, when judges are faces are combinatorily equivalent to either truncated
asked to rank n items, possibly with pseudoranks, in octahedrons, cubes, or hexagonal prisms.
order of preference. Each observation is a
permutation of the n distinct pseudoranks, and the 2. PERMUTATION POLYTOPES FOR n=3,4
resulting set of frequencies is a function on Sn, the Before developing the concepts needed for the
symmetric group of n elements. Because Sn does not proposed graphics for either n>4 or for pseudoranks,
have a natural linear ordering, graphical methods such we illustrate the proposed technique with ordinary
as histograms and bar graphs cannot be used to ranks for n=3 and n=4. Ranked datn cn be recorded
display frequency distributions for ranked data. either as an ordering or as a ranking. Items are
Other existing graphical methods for rankings include labeled with letters, and orderings are denoted by
multidimensional scaling, minimal spanning trees, and permutations of the first n letters, bracketed by < >.

nearest neighbor graphs as discussed by Diaconis For example, <b,c,a,d> means that item b is ranked
(1988). Cohen and Mallows (1980) propose graphical first, and item d last. A ranking is a permutation of
methods based on multi-dimensional scaling and n values written as a row vector ir = (wl, 7rn)
biplots. Cohen (1990) presents alternate exploratory where iri is the rank of the ith it. - Th rakn

biplots i tem. The ranking
data techniques for ranked data. corresponding to <b,c,a,d> is (3,1,2,4).

In this paper, graphical methods are developed Figure 1 shows the orderings and rankings of the
to display frequency distributions of fully ranked data 6 elements of S3. Two adjacent points are connected
by using permutation polytopes. A polytope is the by an edge if their orderings differ by a pairwise
convex hull of a finite set of points in Rn, and a adjacent transposition, or equivalently, if their
permutation polytope is the convex hull of the n! rankings differ by the inversion of two consecutive
points in Rn whose coordinates are the permutations values. Hence, the minimum number of edges that
of n pseudoranks. To represent a set of ranked data, must be traversed to get from one vertex to another is
the frequencies with which the permutation are chosen equal to Kendall's r. Formally, if i- and o are two
are displayed, not on a line as is done with rankings, then r(?,q) is the number of pairs (ij) such
histograms, but on the vertices of the permutation that 7r.<wr, and o.>a. This is equivalent to the
polytope. The resulting graphical displays are minimum number of pairwise adjacent transpositions
especially useful as diagnostic tools because they are needed to change the ordering corresponding to v into
compatible with two commonly used metrics on Sn: the ordering corresponding to o,. The placement of
Kendall's r and Spearman's p. Both the r and p are the vertices in Figure 1 is also compatible with
easily interpreted on the permutation polytope. Spearman's p: n

The permutation polytope on which the n! p(nq) = (ri - .2 )1/2
frequencies are displayed is inscribed in a sphere in an
n - I dimensional subspace of Rn, as noted by If the edges of the regular hexagon are all of length
McCullagh (1990) for ordinary ranks, in such a way 42, then Spearman's p is the Euclidian distance
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between two vertices. Note that the two vertices on a frequencies of the 38 pre-course rankings are shown in
common edge have the same item ranked either first Figure 4a and the 38 post-course rankings are shown
or last. in Figure 4b. Most obviously, the frequencies do

These ideas extend to n=4 by placing the 24 change a great deal between the two sets of rankings.
permutations on the vertices of a truncated First, there is an increase in the frequencies at the 6
octahedron, as shown in Figure 2 [ Yemelichev et. al. vertices that correspond to orderings that begin with
(1984)). The truncated octahedron has 8 hexagonal c. The post-course ranking do not seem to have
faces and 6 square faces. As in Figure 1, r is the moved toward the teacher's preferred ranking,
minimum number of edges that must be traversed to <p,c,a,t>, but as concluded by Critchlow and
get from one vertex to another, and p is the Euclidian Verducci (1989), they appear to be, over all, closer to
distance between two vertices if each edge has length <p,c,a,t> than are the pre-course rankings. The
42 [cf. Schulman (1979)]. On the truncated orderings seem to have moved toward <c,p,t,a>.
octahedron, the 4 vertices of a square have the same 2 McCullaugh and Ye (1990) illustrate a similar
items ranked in the first 2 positions and the other 2 conclusion by plotting the vectors of the average pre-
items ranked in the last 2 positions. Similarly, the 6 and post-course ranking on a truncated octahedron.
vertices of a hexagon all have the same item ranked Other observations are 1) the frequencies at the 6
either first or last. The idea that each face has a vertices corresponding to the ordering ending in (c)
"defining property" is fundamental in the proposed decrease; 2) style (a) is rarely chosen as either a first
graphical methods for n>4. or second choice after the course is completed; and 3)

For n = 3, consider the data of Duncan and the incidence of style (t) as a first choice decreases.
Brody (1982) in which 1439 people ranked city, To make the plots perceptually accurate, the
suburban, and rural living in order of preference. The areas of the circles in Figures 3 and 4 are based on
current residence is also recorded as a covariate. For Steven's Law which says that the perceived scale, p, of
each covariate, the relative frequencies of each the size of an area is
permutation were calculated. In Figure 3 these p x (area) 7

relative frequencies are plotted on the vertices of 3 (Cleveland, 1985). Hence, the areas of the circles are
hexagons. Each hexagon corresponds to a covariate, calculated as
and the sizes of the circles at the vertices indicate the area cx f
relative values. It is immediately obvious that rural where f is the frequency. If the areas are proportional
and suburban residents are similar to each other, but to the values, i.e., area oc f, then small circles appear
are both different from city dwellers. Those who too large and large circles appear too small.
prefer the city most seem to live in the city. Conversely, if the radius of the circle is proportional
Relatively few rural and suburban dwellers prefer to the frequency, i.e., area oc f2 , then large values are
their current location least, while many city dwellers magnified and small values are minimized.
would rather be anyplace else. For n = 3, this
proposed graphical technique is similar to the graphics 3. PERMUTATION POLYTOPES FOR n > 4
of Cohen and Mallows (1980) in which circles with Instead of using the integers from 1 to n, some
areas proportional to the frequencies are placed at the applications use pseudoranks in which a ranking is a
ends of 6 vectors radiating from the origin, vector whose elements are a permutation of n distinct

The plotting of ranked data with n = 4 on values, and an ordering is a permutation of the n
truncated octahedrons is illustrated by the following items such that the ith item is assigned the ith

example. At the start of a literary criticism course, smallest pseudorank. Without loss of generality,
38 students read the short story and ranked 4 assume that the psuedoranks are al>a2 >...>an > 0.
different styles of literary criticism in order of The ordinary ranks are ai = n-i + 1. To extend
preference. At the end of the course, they read Spearman's p to pseudoranks, let a(jr) = (a(rl),
another short story and again ranked the same four a(7r2 ), ..., a(vn)) and a(q) = (a(al), a(o' 2 ), ...., a(on))
styles of literary criticism. The 4 styles were be two rankings where r and q, are elements of Sn.
authorial (a), comparative (c), personal (p), and Then n 2)1/2
textual (t); and the question of interest was whether p(a(1r),a(q) ) = ( (a.- a l
or not the post-course rankings had moved in the =
direction of the teacher's own preferred ordering Next, as in Schluman (1979), consider the set of
<p,c,a,t> [see Critchlow and Verducci (1989)]. The vectors in Rn whose elements are permutations of the
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pseudoranks. These points lie in the intersection af also extends Kendall's r to pseudoranks in an obvious
the sphere n I manner that warrents more study. Similarly,

(x- = - j (ai -i) 2  Theorem 3.4 shows that every 2-face is either a
i=1 i-1 hexagon if all Q have one element except one which

and n - 1 dimensional hyperplane has 3 elements (so that all but 3 of the orderings are
n 1n fixed), or a square if all Q have one element except

xi = n W where -9=n- ai  for 2 of them which each have 2 elements. The 3-
i=1 i~1 faces correspond to truncated octahedrons if all Q

The permutation polytope is the convex hull of these have one element except one (so that all but four o
points, ar.- it can be mapped into Rn- 1 via the the orderings are fixed), to cubes if all Qk have one
Helmert trisformation. Because it is an orthonormal element except 3 which have 2 elements each, and to
mapping, it preserves distance and angles, so that the hexagonal prisms if all Qk's have one element except
polytope is still inscribed in a sphere in Rn-land 2, one which has 2 and one which has 3 elements.
Spearman's p (which is the Euclidian distance Thus, all 3-dimensional faces of any permutation
between two points) is preserved. When ii=4 and polytope can be characterized and the data can be
a i = n - i + 1, calculations show that the resulting illustrated by a sequence of 3-dimensional polytopes in
polytope is a truncated octahedron whose vertices are which the frequencies are plotted on the appropriate
exactly the vectors of permutations and whose edges vertices. Frequently, it is useful to also plot portions
are all of length -. of the 4-dimensional polytopes.

For n > 4, the proposed graphical methods
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Nome Uses of Quantile Plots to Enhance Data Presentation

David M. Shera
428 Broadway #3, Somerville MA 02145

Abstract dimensional which crosshairs, X's, and asterisks are
Quantile plots are used to display data for better not. The hollowness allows points to overlap

understanding and comparison of distributions. Splitting the without much loss of ink area.
quantile plot by a categorical variable helps one visualize an • For reference, crosshairs are plotted at the quantiles of
analysis of variance. Plots of of rank-transformed data .05, .25, .50, .75, and .95. They are slightly larger
corresponds to non-parametric methods and can also aid in than the diamonds, so as to show up in plots with
the analysis of categorical data. As less abstract and more many points, but do not add any more two-
direct presentations of data than, for example, box plots, dimensional images to the picture.
quantile plots can be more effective, in particular, when * Small dots are placed at the corners of the "box" of
presenting to non-statisticians. the traditional box plot. (These dots may be too

small to show well in this printing.)
Defi nit ion • At the far left are five cross-hairs which represent the
This paper will present quantile plots as a method of mean and one and two standard errors (not standard

plotting actual data side by side in a way that is easily deviations). The choice to plot both one and two
prcscntable to anyone, regardless of their statistical training, standard errors was to make it unambiguous as to
One simply plots the data points as an empirical quantile how many standard errors were represented.
function [Parzcn, Cleveland] which is the plot of the value • At the far right, the crosshairs indicate the endpcints
of each observation on the vertical scale against the rank of a non-parametric 95% confidence interval for the
within the sample on the horizontal scale. The idea is that median.
the random variable V is a function on the unit interval, * A reference line of dots lies on the diagonal for visual
10,11. It is closely related to the empirical cumulative anchoring. The diagonal line can he a great aid in
distribuition of V with the horizontal and vertical axes comparing different quantile plots.
flippcd. One should be careful not to confuse the meaning The primary purpose of these plots is to emphasize the
of "quantilc plot" in this paper with the common "quantile- overall shape of the distribution and adding too many extra
uauilc plot" or "q-q plot" which has a slightly different symbols wiil distract the eye from this purpose. There are

dclition and different use. Here, the former is a speciol other common statistics which are left out:
ca.ses of the latter, i.e., a q-q plot with uniform quantiles on • The standard deviation: First, for skewed data, the
the horizontal axis. This paper also pertains only to the use standard deviation marks could extend over the
of quantile plots and does not involve quantile functions or boundary of the plot on the high or low side,
their estimation. (IParzen] has more sophisticated uses for possibly onto other sections of the graph. Second,
quantile functions and related constructs.) all information on the variability is contained in the

In Figure 1, "Score at Week 3", each observation is a quantile plot itself and the information from the
single diamond. When N gets to be very large, the points standard deviation will be redundant. If it is
tend to meld together, depending on the resolution of one's important to a specific presentation, the standard
graphics device. But with such large N, the empirical deviation is easy to add.
distribution should be closer to the true distribution. Any * Quantile points at a variety of locations (.05, .15,
(Lu:Intilc of the distribution is readable from this graph, in .25, ...). When included in a narrow range between .4
particlar, the median, which is the quantile at .5 . The and .6, these points tended to clutter the plot.
local dcnsity is the inverse of the local slope of the quantile * Altering shapes, coloring, and shading of points was
function so that ranges where the slope of the points is low rejected in favor of having all points have equal visual
arc regions of higher density. Extreme outliers and multiple impact and thus, equal importance.
modes are often obvious to the eye. The use of points * Including a smoothed version of the quantile function
makes the amount of ink used to print the points is certainly possible, but then one must make a
proportional to the size of the sample, a desirable properly. choice of smoothing method. A recent example of
Connecting the points with lines w )uld confuse this one such method can be found in [Yang].
ink/observations ratio and also emphasize what could be an Here the reader may ask, "Why not use cumulative
incorrct interpolation, distribution plots?" The vertical orientation of the quantile

One can easily add many features to represent various plot brings gravity inherent in the page into play: areas of
sum mary statistics. The interpretation of the symbols in lower slope are more "stable" spots. In a cdf, a variable
thcse quantile plots is as follows: which tends to have "higher" values has a "lower" cdf, while

The data points themselves are small, hollow in a quantile plot, "higher" really means "higher" in both
diamonds. Diamonds more precisely indicate position senses of the word. If we truly think of the random variable
than do squares or circles. Also, they are two- as a function, standard convention puts the function value or
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range on the vertical axis and domain on the horizontal. Treating it as a numerical variable and creating quantile plots
One more point about gravity: in a histogram with of the ranked values, we have one way of graphing
horizontal bars or a stem-and-leaf plot the larger bars might categorical data in a 2 by 2 by 2 table. Note that the upper,
look as if they will break and fall off. right-hand cell has fewer observations and the rows of

diamonds reflect the relative proportion of observations with
Splitting Plots and Ranked Values each of the outcomes. The upper, right-hand cell has a
By splitting the graph into separate, parallel graphs by lower rate of high outcome. But to reiterate, the means and

different groups, one can perform a visual analysis of standard errors are based only on each cell, not on any
variance to supplement an ANOVA table and to provide overall model.
more impact to a presentation. There are four ways to split
the graph: along the horizontal axis, along the vertical axis, Comparison to the Box Plot
across pages, and overlayed. It is best to split horizontally Often one starts looking at data with a traditional box
by the the variable of most interest, for the mean/standard plot [Tukey], but some have been looking for
error and median/confidence marks will line up for easy improvements. One possibility is altering the shape of the
comparison. Overlaying one quantile graph over another for box to show density [Benjaminil which requires some
comparison purposes has great appeal, but it will also cause density estimation. One of the problems is the visual
crowding if the two quantile functions are very close. How difference between the "box" and the "whiskers". What is
to differentiate between the symbols from two or more the intuitive meaning of representing the middle half of the
separate sets of observations in an obvious way is an data with a two dimensional object and other subsets with
additional complication. Splitting vertically makes sense one dimensional objects? Also, computer statistics
for confounding variables where tests for differences are less packages can be inconsistent in their calculation of the
important, length of the whiskers [Frigge, et all.

Figure 2, "Score at Week 3", contains the same data as The box plot also does not readily reflect the actual
in Figure 1, but this time split by the two categorical number of observations, N. Some try to remedy this by
variables Treatment and Sex. Note that there are about half letting the width of the box be proportional to the square
as many males as females, as indicated by fewer points in root of N. However, with this alteration, different box plots
the cells for males. Also, the means and standard errors, on are no longer comparable visually. In the quantile plot there
the left side of each cell, indicate that treatment I is more is no need to make a mental transformation from width
effective. A higher score means worse in this variable, so (O1N), or whatever, to N. Sometimes there are confidence
that the further below the diagonal line the quantile plot lies, regions around the median with either "notches" in the box,
the better off the patients are. It is important to remember or shaded blocks; but the notches or shaded blocks alter the
that the means, standard errors, and all other summary visual weight of the primary features of the box plot.
statistic symbols in the plot are not based on any particular The box plot is an abstract picture based on a handful
model but only the data in each cell alone, statistics calculated from the data. There is a reduction of

One could also plot rank-transformed data to graphically information in the transformation, which is fine if these
look at a non-parametric Kruskal-Wallis ANOVA. In this statistics are the right statistics. However, if the
case, the diagonal line enhances the plot because it distribution has certain peculiarities, those handful statistics
represents a theoretical distribution of rank transformed may not reflect important features and instead present an
values. Here, ties are assigned the mean rank but the range inaccurate picture.
of the plot runs from 0 to N, or 0 to I if the ranks are Of course, the combination of a box plot with a stem-
divided by N. When split, deviations from the overall and-leaf plot or histogram will give more information, but
distribution show as more points above or below the there are some drawbacks:
diagonal line. Figure 3, "Score at Week 3 (Ranked - The combination requires two graphs and uses more
Values)", is again based on the same data using the ranks of space and paper.
the values within the whole sample rather than the values - The histogram implicitly requires a choice of division
themselves. Note that the values at the top have been points which is a smoothing decision. Likewise, the
squeezed together and are no longer evenly spaced. stem-and-leaf plot also has implicit smoothing and

The plotting of rank transformed data is also useful for often must round values to a convenient number of
ordered categorical data, which includes dichotomous data. significant digits
However, one should remember to use mean rank so that the * By continually varying, each quantile plot will be
points will not end up all at the top or the bottom of the nearly unique. The endless variety of plots may hold an
cell, possibly merging with points from another cell. For audience's attention longer because human beings tend
ranked values the diagonal line should go through the centers to notice and be more curious about variety.
of each level overall. In Figure 4, "Ouic,"me (Ranked
Values)", there is a single dichotomous outcome variable.
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Figure SA, "Box Plots", contains two groups of data.
The first thing to notice is that group B has significantly
higher values and is more spread out. Group A looks to
have some outliers on both the high and low ends.

Figure 5B, "Quantile Plots of 5A", contains the same
data but shows a different picture. Group B actually has
what looks to be a bimodal distribution with the median
falling nearly halfway between the two modes. This
property did not show up in the box plot. Additionally, in
group A, three suspected outliers on the high side actually
turn out to be about 10% of group A. The box plot was
using single asterisks to indicate what was actually more
than one observation. As it turns out, after discussing this
with the client, there was a systematic problem in our
definition of this variable which lead to the suspicious
distribution. The additional detail in the quantile plot helped
identify and explain the problem much sooner.

Summary
The quantile plot is a less abstract presentation of an

empirical distribution than the traditional box plot. It
presents a picture closer to the statistician's own mental
picture of the data and analyses. Because it displays each
observation and not just an object created from certain
statistics, it may be better for presentaton of data to non-
statisticians. Finally, quantile plots can show features of
the data that might be hidden by other methods, including
problems resulting from bad data coding or calculation
errors.
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Singular values of large matrices subject to Gaussian perturbation
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Abstract-
" Extending the work of Wachter (1978, 1980) and

many others, we study the configuration of the singular val- 14

ues (s.v.'s) of an a by b matrix of the form X=M-fkrZ
where M is a constant matrix, and the elements of Z are 130

i.i.d., standard Gaussian, in the limit as a and b increase in_______"___o____
constant ratio. We put -a + b and suppose a = N,

-with a of order INV. Let the empirical distribu- 110
tion of the s.v.'s of X be GN, and let the corresponding
moment-generating-function (m.g.0 be g(t). These are_
random quantities; their distributions depend only ori(nd -, 90

the empirical distribution FNv of the s.v.'s of M. We derive a
80differential equation that governs the evolution of E(glv) as

a increases. In the limit as N-4o we can solve this exgua- 61
tion and hence exhibit the limiting (non-random) g itself.

This study was motivated by some blood-pressure 60
data collected by a new type of transducer. It suggests a

novel way of adjusting large matrices to reduce the effect of 50

additive contamination. 4, o

- - Figure 1
1. Introduction

In the standard technique for measuring blood pres-
sure, a pressure cuff is applied to the upper arm, inflated to with m not too large, would fit the data; here each row of the
constrict the artery, and deflated while a technician listens matrix B = (bkj) is a prototypical component of a heartbeat
(through a stethoscope) for the so-called Korotkoff signal. trace, and the columns of A =(a a) show how these compo-
A novel form of transducer now allows the recording of a nents enter and leave during the evolution of the traces. By
continuous trace of inaudible low-freq ,ency auditory data, convention, the rows of B and the columns of A are stan-
thus affording a first glimpse of the details of the process. dardized to unit length; the magnitudes of the coefficients
Figure 1 shows such a record, segmented into individual {Ck) measure the importance of the components. It is a
heartbeats. Cuff pressure decreases down the figure. property of the singular-value decomposition of a matrix

An early attempt to analyze such data consisted of that the best (least-squares) representation of the form (1),
regarding Figure 1 as a display of the rows of a 70x373 using m terms, is obtained by taking the first m components
matrix X. We performed a singular-value decomposition in of the singular-value decomposition
the hope that an additive representation of the form X=ACBT

XI = cakbkj, (1) where ATA =BTB =I,,C = diagonal, where r is the rank of
k=1 X. It would be pleasant to find that a small value for m suf-

fices to give a good fit to the data.
On performing the calculation, we found that a few of

the singular values were quite large, while most were small.
We were faced with the problem of deciding how many
components to use.
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2. An idealized problem. approximate methods.
As an idealization of this set-up, suppose we have

observed an axb matrix X with the structure 3. A differential equation
Since we are assuming that Z is Gaussian, we can

X=M +Z appeal to the fact that
where the elements of Z are independent standard Gaussian. M+oZ=M+sZ +tZ2
How do the singular values of X depend on those of M?. We
formulate this as an asymptotic question. Suppose ab, where a2=s 2 +t 2 , and Z, and Z2 are independent Gaus-
and put N = a + b, a = aN, b = 3N. We study the asymptotic sian. We can set up a differential equation for the expected
configuration of the singular values (s.v.'s) of an a x b generating function

matrix of the form X=M+a---Z where M is a constant yV(a2,z)=E(g "z)(z))
4K

matrix, and the elements of Z are i.i.d., standard Gaussian. by retaining only the terms of order 0
2 in the expected

Suppose X has singular values x1, • - ,x.. It is convenient moments. We find
to work with a symmetrized form of the empirical distribu- _ , , 1
tion of these s.v.'s, namely =-- (-p-)-- - (2)

GW)(x)= I( l(-xi <x)+(b-a)l(x>O)+ I J(xi <x)) + 2  1 z ___

N 4N aZ2+ ZaZ 2

We also need the generating function (modified Stieltjes
transform) and we need merely to solve this equation.

Z dGN(x) 4. ThecaseN=*,a= 1/2.
g _.(z)= _ From (2) we have

aT 1 ay
= z 2 k+lX2k aa2  (3)

k=O with the boundary condition

where X2k is the 2k-th moment of the (symmetrized) distri-
bution Gw ), so y(x)= M) (

X 2 X,2k This relation provides a rapid way of computing the

N moments of G from those ofF. The solution of (3) is

Both GW ) and g ) are random quantities; their distributions _(
2 , Z) = T(M+1z) (Z) =_ M) (y)

depend only on a and the (symmetrized) empirical distribu- where
tion F%M) of the s.v.'s of M. We define the moments M wh
and a generating function fk$) from FT ) in a similar fash- z =y +a 2 (M)(y)
ion. Below we shall let N--oo, and shall assume that F ' )

converges to a limiting distribution F that has a moment-
generating function f (with moments .t2k) that converges When M =0 we find
within some non-vanishing interval.

Wachter (1978) considered this problem, replacing /0) (z)=(0,z) = 1
the Gaussian assumption by one involving boundedness of 2z
moments; also he allowed the columns of Z to have different y(U) ='y(c 2 ,z) = 2y
variances. However (in our notation) he assumed M-0 as
N-oo, so that the effect of M was negligible in the limit. In where
the present work, the role of M is crucial. Our results seem o2

to be new. We find, as did Wachter, that as N-4o GN con- z =y + Y 0)(y)=y +
verges to a non-random limit G (with generating function g, 2y
and moments Y2)- so

We derive a differential equation for E(g)). We
cannot solve this in general; however letting N--o*, we y(a 2 Z)=.--2 (Z-zZ2:-2)
derive a formula for the limiting g as a function off and a. 2a
In principle this enables us to calculate the density corre- 2 422 -
sponding tof once g is known; in practice (since N is finite) f OZ)(x) -a x2 O<x<-2-j "

this is an ill-conditioned calculation and we need
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This is Wigner's "semicircle law", see Mehta (1967) and
Figure 2.

C14

.g
0

• "0

00

0.0 1.0 2.0 s.v.'s, alpha , .1, M = 0
s.v.'s, alpha - .5, M - 0 Figure 4

Figure 2 6. A special case.

5. The caseN=oocz 1/2. Suppose a= 1/2, and that all the s.v.'s of M am equal

Write =(a- p)
2. We find to At. Then 2k = 2i, and

zy(o 2 ,z)=yy(Oy)+a 2Q (4) ( 2 ( l- + xp)

where Thus ifX =M + (a//N5 ) Z (remember N =2a) we have from
Q - 2(y,)__ =y20 _ _ (7)

4y2 Y
When M=0, take a=1, and write y for y(l,z). We 1( y

find where

21 8 1 1 +T y
2= + z x y 21-y 2 

A 
2

whence This relation holds within the circle of convergence. To get
X) 1 (B2 -x2)(X2-A 2 )  (5) F itself, we need to continue the definition outside this cir-

- (ax cle, taking care to use the correct branch. Then we apply the

where formula (see Wachter (1978))

A=NrP-Nra_, B=4_P+N4a. A()= 1IM 1f-)C t
See Figures 3,4 for the cases a= .3, oa=. 1. In one case we can get an explicit result, namely when

o 2 2
C~~j A=a/2

In this case
.C i 2 2)

o.,_ x=y(I-y ji)

so that

0.0 1.0 2.0s.v.'s, alpha = .3, M 0 0 Thus we need only solve a cubic equation. Writingy=(2/1Nwri sin0, we have sin30= 3N'rig2. We get corn-
Figure 3 plex roots for I14<3/31if2. For O<t<31 13/2 we put

O=it/ 6 +iV and find
fx()= - sinh2w/ (6)

where

cosh3 '= 2
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See Figure 5. Remember that this is the symmetrized distri-
bution, so we need to multiply by 2 to get the limiting den-
sity of the s.v.'s of X.

- :
0 *0

-0

0.0 2.0 Figure 7

s.v.'s, alpha = .5, M = sqrt(N/2)l

Figure 5 8. Final Comments
Clearly this work is incomplete. Among the things

7. Statistical application. that need doing are:

Suppose we compute the s.v.'s of a large matrix, and (i) Extend the results to dispense with the assumptions of

observe that their empirical distribution is similar to (6) Gaussianity and identical distribution of the elements of Z.

above. Then this supports the view that the matrix cn (ii) Extend the results to dispense with the assumption that

regarded as the sum of (i) a fixed matrix with all the moments of F are finite.regadedas he um f () afixe marixwit al s~.'s (iii) Develop an algorithm to find the density of G directly
equal, and (ii) a matrix of independent random variables from the density of F.

with equal variances. In more generality, if the s.v.'s of a from the deni of F.
larg sqare atrx hve a emiricl dstrbutin G we (iv) Develop techniques to do (iii) approximately (in somelarge square matrix have an empirical distribution G, we

would like to estimate an F such that the relation (4) is appropriate sense) in the case N finite.

approximately satisfied. As yet we have no detailed sugges- (v) Solve (2) in general.

tions as to how to do this. (vi) Study the variability of GWP.

For the 70x373 matrix that stimulated this investiga-
tion, we find that a q-q plot of the 70 realized singular val- References
ues against quantiles of the distribution (5) (Figure 6) is
very far from linear; the lowest 30 or so s.v.'s (Figure 7
shows 40) do conform roughly to this null prescription, with Meha, M.L. (1967) Random Matrices and the Theory of
a about 65. But this value for a is much too large to be rea- Energy Levels. Academic Press, New York.
sonable for these data; computing the the root-mean-square
successive difference of the rows of the matrix, we get num- Wachter, K.W. (1978) The strong limits of random matrix
bers averaging 23, with a maximum of 45. We conclude that spectra for sample matrices of independent elements. Ann.
for this approach to work, we will need an M with very few Proba 6, 1-18.
non-zero singular values. Evidently this approach is Probability6,1-18.
unsuited to these data. Wachter, K.W. (1980) The limiting empirical measure of

o multiple discriminant ratios. Ann. Statistics 8,937-957.
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will not make any more specific assumptions about its struc-

Abstract ture. To explore the data, we need a way to look at the local

This paper presents a method for interactively exploring a structure of the data in a limited region. So we will examine the
large set of quantitative multivariate data, in order to estimate data in a given region by viewing the data through a Gaussian
the shape of the underlying density function. It is assumed that window, whose location and shape are chosen by the user. We
the density function is more or less smooth. The local structure will describe the local structure of the data by a method similar
of the data in a given region may be examined by viewing the to the method of principal components. By doing this we will
data through a Gaussian window, whose location and shape be able to find and describe simple structural features in the
are chosen by the user. The method, which is applicable in any data in any number of dimensions.
number of dimensions, can be used to find and describe simple Some examples of the kinds of structures that we can find
structural features such as peaks, valleys, and saddle points in and describe are the following: A peak, or relative maximum,
the density function, and also extended structures such as in the density function, which would appear as a cluster of data
ridges and analogous structures in higher dimensions. A points; a valley, or relative minimum; and a saddle point,
Gaussian window is defined by giving each data point a weight where the density function would be concave upward in some
based on a multivariate Gaussian function. The weighted directions, anddownward in others. Wecan also findextended
sample mean and sample covariance matrix are then corn- structures such as a "ridge" or "bar" in the data. A "ridge" is
puted, using the weights attached to the data points. These an essentially one-dimensional structure, or concentration of
quantities are used to compute an estimate of the shape of the data points, consisting of data points lying near a "center line"
density function in the window region. The local structure of but scattered about it in all directions. Only a part of such an
the data is described by a method similar to the method of extended structure would be visible in a single window. In a
principal components. Thus we can apply our geometrical case like this we will be able to tell that we are looking at a
intuition to the structural features we find in the data, in any structure that extends beyond the window. We can then follow
number of dimensions. By taking many such local views of the along it and map out its extent and shape. Similarly, we might
data, we can form an idea of the structure of the data set. Since find an essentially k-dimensional structure in a p-dimensional
the computations involved are relatively simple, the method space, for any k < p.
can be implemented on a small computer.. By taking many local views of the data, that is, by

exploring the data interactively, we can build up an idea of the
structure of the data set. With some practice, we can apply our

1 Introduction geometrical intuition to the features we find in the data, in any

Suppose that we are given a large set of quantitative number of dimensions. Since the computations are relatively
multivariate data, say, N data points xi in a p-dimensional simple, the method can be implemented on a small computer.
space, and that we want to explore the structure of the data. The approach here is different from that in the many
That is, we want to find the shape of the underlying density graphical methods that involve projecting the data onto a space
function, by looking for concentrations of data points. We will of lower dimension. See for example Chambers et al. (1983)
assume that the density function is more or less smooth, but we and Cleveland and McGill (1988). However, such graphical

methods can be used in conjunction with the method described
*Work reported herein was supported in part by Cooperative Agree- h

ments NCC 2-408 and NCC 2-387 between the National Aeronautics here.
and Space Administration (NASA) and the Universities Space Re- The ideas outlined in this paper are treated more thor-
search Association (USRA). oughly in Jaeckel (1990).
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2 The Gaussian window Assume for simplicity that a, the window center, is 0.

Let B = V-'. It will be more convenient to work with B.
To focus on a limited region in the space, we usea window. Let A = B + V. Then, by doing some algebra, we find that

A Gaussian window is defined by choosing a center point a the windowed density function is
and a non-negative definite symmetric matrix V to describe
its size and shape. Let w(x)f(x) = K- e -

_i (x-c)'V(x-a) ( ) e 2

w(x) = e 2
This is a multivariate Gaussian function with "windowed

where x is a p-vector and "prime" means "transpose". The mean" A-'Bt and "windowed covariance matrix" A-'. It
matrix V is analogous to the inverse of a covariance matrix. follows that the weighted sample mean 1w' is an estimate of
Each data point xi is given the weight wi = w(xi). Note that A-'Bgt, and the weighted sample covariance matrix S" is an
w(a) = 1, that w(x) < I for all x, and that w(x) decreases as estimate of A-. The constant K above is the integral of
x moves away from a. Thus we have defined a window with w(x)f(x) over the entire space. We will estimate it by
"fuzzy" boundaries. The function w(x) may be thought of as (1/N)Iwi, the average of the weights.
the relative transparency of the window at x. We now "degauss" the view of the data as seen through the

We then compute the weighted sample mean vector, Gaussian window; that is, we remove the effect of the weights
1 on the shape of the data in the window region. Since Sw is an

xw= 1wi Y-WiX i  estimate of A-, we can estimate A by Sw-', and we have

and the weighted sample covariance matrix, Sw + V.

S,, .wi(xi-Xw)(xi- Xw)- So we can estimate B by
1w,

A

We also compute (1/N)wi. B = S,- V.
These quantities are the simplest things to compute, espe-

cially in a high-dimensional space. They describe the overall We can then estimate Z by
shape of the weighted data in the "window region" (the region A A

vaguely defined as the region where w(x) is"not small"). The 7 = B = (Sw'- V)',
estimated shape of the density function in the window region
will be based on these quantities. Note that these quantities are assuming that S -' - V is positive definite.
overall statistics; any "fine structure" in the region is smeared Since Kw is an estimate of A-Bit, we can estimate I by
out. To look for finer details, we would use smaller windows.

A AB =WSw'w

3 Example: a cluster And since (I/N)Zwi is an estimate of K, we can also estimate

Suppose that in the region of a window, the density the constant C. These estimated parameters give us an
function has approximately a multivariate Gaussian shape: estimate of the shape of the density function in the window

region. Note that all of the computations are simple matrix
1 - (x - ) L-(x - ) operations.

f(x) = C e If we find a cluster in a window, we can describe its shape
using the method of principal components. See Morrison

where i, Z, and C are all unknown parameters. That is, we (1990). To do this we find the eigenvalues and corresponding
AAhave a single peak (or cluster of data points) in the window eigenvectors of I. The estimated shape of the cluster is a p-

region. The vector I is the center point of this part of the dimensional ellipsoidal shape centered at 9t. The principal
density. The symmetric matrix E is its covariance matrix. The axes of the ellipsoid are parallel to the eigenvectors. The
constant C represents the "probability mass" of this part of the estimated density function can be expressed as a product of p
entire probability distribution. univariate Gaussian (normal) densities, each lying along a

The windowed density function, the effective density principal axis. The standard deviation of each of these densi-
function of the dataas viewed through the window, is w(x)f(x). ties is the square root of the corresponding eigenvalue (all of
That is, if we assign weight wi = w(xi) to each data point xi, which are positive in this case). Thus we have a way of
and if we docomputations with the weighted xi, the results will thinking about the shape of the cluster in any number of
be as if we were working with a sample from w(x)f(x). dimensions.
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• . A

Note that we could dAo this analysis based on the matrix B, vector. In the case of a ridge, which is an essentially one-
which is the inverse of T. These two matrices have the same dimensional concentration of points, B will have one eigen-
eigenvectors, and the eigenvalues of B are the reciprocals of value very near 0, and the corresponding eigenvector will be

A A
those of 1. It follows that a large positive eigenvalue of B parallel to the "center line", or crest, of the ridge.
indicates that the data points are tightly concentrated along the Since a structure like this does not have a center point, as
corresponding direction, while an eigenvalue near 0 indicates a cluster does, we will not try to estimate a center point here.
a structure that may extend beyond the window region. When Instead, we will estimate the location of the center line of the
we deal with more general structures, we will analyze their ridge. See Jaeckel(1990). Wecanalsousethe p-i remaining
shape by looking at the eigenvalues and eigenvectors of B. eigenvalues and eigenvectors to estimate the shape of the

The analysis above also applies if the shape of the density cross-section of the ridge. In a p-dimensional space, a ridge
function in the window region is a valley ora saddle point. In would have a (p-1)-dimensional cross-section orthogonal to
these cases all or some of the eigenvalues of B will be negative, the center line.
A negative eigenvalue indicates that, in the window region, the If we find a structure like this, we can then move the
density function is concave upward along the direction of the window center to the nearest point on the center line and try
corresponding eigenvector. another window. Then we can follow along the ridge by

moving the window center along the estimated center line. By
continuing in this way we can map out the extent and shape of

4 The general case the ridge. An essentially k-dimensional structure, or concen-
We now give a more general formulation which will tration of data points, can be treated in a similar way.

include the examples above, and also extended structures such Since the method is interactive, it is flexible and open-
as a "ridge". We will assume that the density function in the ended. It can be used (in principle) in any number of dimen-
window region can be approximated by sions. Few assumptions are made about the data. We can

search for structural features by trying many different win-
_ H x'Bx + r'x dows, and we can describe the features we find. Then we can

f(x) = H e 2 put together what we have found into an overall description of
the data. The method can be used in conjunction with other

The exponent is a general polynomial of degree two in the methods, such as graphical methods an( automatic clustering
coordinates of the vector x. (Any constant term is absorbed in algorithms. Note that with this method we can Iind structural
H.) The constant H is the density at the window center features other than clusters. Since the computations are rela-
(assumed to be at 0). The symmetric matrix B may or may not tively simple, the method can easily be implemented on a small
be positive definite, and it may or may not be non-singular. If computer. Any standard algorithms for inverting a matrix and
B is singular, there is no center point ga for the function. for finding the eigenvalues and eigenvectors of a symmetric

As before, the windowed density function w(x)f(x) is a matrix can be used.
multivariate Gaussian function. We therefore compute zt, S ,  Most importantly, we can apply our geometrical intuition
and (1/N)Ywi as before, and we estimate the parameters B, r, to the features we find in the data, so that we can think about
and H based on these quantities. See Jaeckel (1990). Since in and describe the structure of a set of data in any number of
the general case B might be nearly singular, we will work dimensions.
directly with A instead of inverting it. We then find the• A

eigenvalues and eigenvectors of B, and we use these quantities References
to describe the shape of the estimated density function in the
window region. The method is analogous to the method of Chambers, J., Cleveland, W., Kleiner, B., and Tukey, P.
principal components. The interpretation of the eigenvalues (1983), Graphical Methods for Data Analysis, Pacific
of B is the same as in the previous section. As in principal Grove, CA: Wadsworth &Brooks/Cole.
components analysis, we can express the estimated density Cleveland, W., and McGill, M. (eds.) (1988), Dynamic
function as a product of p functions of one variable each. Graphics for Statistics, Pacific Grove, CA: Wadsworth

We c'in now handle the case of an extended structural & Brooks/Cole.
feature, such as a "ridge" of data points, that passes through Jaeckel, L. A. (1990), Gaussian windows: a tool for exploring
a window and extends beyond it. In this case B will have some multivariate data. Technical Report 90.4 1, RIACS, Moffett
eigenvalues very near 0; these eigenvalues tell us that the Field, CA (Submitted for publication in J. Amer. Statist.
structure extends beyond the window. Since B is the estimated Assoc.).
inverse covariance matrix, an eigenvalue near 0 indicates that Morrison, D. F. (1990), Multivariate Statistical Methods
the data in the window region appear to have an essentially (3rd ed.), New York: McGraw-Hill.
"infinite" variance in the direction of the corresponding eigen-
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Definition of the Problem sional random vector with independent coor-
Factor analysis is a frequently used statisti- dinates El; ... ; Ed. The conditional distribution

cal tool for representing a usually large um- of Ei given Xi is
ber of observable variables with a smaller set Ei P(EiJXi = 0) P(cixi = 1)
of latent factors. In classical factor analysis, -1 0 Pi
the observable variables are expressed as linear 0 1 - P0 1 - P,
combinations of the factors. During this pro- 1 Po 0
cedure neither the factors nor the scores are
binary. Boolean factor analysis is a procedure The error probability depends on the actual

for the representation of binary variables in value of Xi of the i-th coordinate of X. It is

terms of Boolean combinations of binary fac- supposed that the error probabilities Po and P,

tors. ' are small.

Suppose that X is a d dimensional random The aim of the Boolean factor analysis is to

variable with binary coordinates and recover A and Y with the help of the given
data set.

X = A ® Y, The idea of Boolean factor analysis at first
appeared at the BMDP package (see Dixon

where A is a fixed (d x 1) matrix with bi- [1]) although their model is slightly different.
nary coordinates and Y is an I dimensional The algorithm developed in [2] is entirely dif-
random vector with binary coordinates with ferent in one step.
I < d. The ® notation means that we are us- Fin Bo S d Loading
ing Boolean operations which are reflected in ding the ooean cores an
the following tables: Matrices

Suppose the data set is given in a matrix
form; D = (dij) is a (dxn) binary data matrix.

(D 0 1 & 0 1 The algorithm seeks a loading matrix A and a
0 0 1 0 0 0 scores matrix S such that B = A®S is "close"
1 1 1 1 0 1 to D, where B is called estimator or predictor

In our model, A is unknown, Y is unknown of D Now we define a criteria for closeness.

and 1 < d means that the data comes from Definitions: Positive discrepancy means
a smaller dimensional space through the fixed that dij = 0 and b0 = 1, i.e., the i-th vari-
matrix A. able of the j-th data is 0 which is predicted

Furthermore it is supposed that there is a as 1. Negative discrepancy means that di = I
random error in the observations; instead of and b3 = 0 i.e., that the i-th variable of the
X we observe A* = X + where ( is a d di ien- j-th data is I which is predicted as 0.

L
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Suppose that the with a smaller cost? The answer is yes. The
cost of positive discrepancy is cp > 0 initial loading vector defined with the help of
and the the pairwise dependence of the variables can
cost of negative discrepancy is c, > 0. be different from the one with all its coordi-
The task is to find loading and score matri- nates equal to 1 and data analysis shows this
ces for fixed unknown I which minimizes the has a lower cost. A data set of 796 patients
overall cost function: was analyzed. The rigidity and strengthness

of the muscles were measured in different parts
C = lID - A & S(I = of the body; there were 89 variables. Table I

shows part of the output of the Boolean factor

cp I(dij = , bij = 1)+ analysis program. Using a loading vector all of

i=1 j=I whose coordinates equal 1 produces a cost of
17572; if we use the random nature of the data

d n set, with the help of the dependence structure
cE l(di = 1, bij = 0). of the variables the initial cost is lowered to

i=1 j=I 5808.

A two step algorithm developed to solve the
above problem is in paper [21 which contains Step Two consists of defining and refining
the details. That version of the Boolean factor the scores and loadings. This is the so-called
analysis program was written for the Discrete Boolean regression step similar to the one used
STatistical ANalysis (DISTAN) package spon- in the BMDP 8M program. In this step for a
sored by the Social Science Information Center given (d x k) loading matrix A and for a given
of the Hungarian Academy of Sciences. This giv e dingmatrixsA a for aiecase x2 the algorithm chooses a score which
program has another version with more fea- minimizes the cost of misprediction for that
tures. A brief description of the algorithm now case examining all possible 2 k scores. Then
follows, the loading matrix A is modified in a similar

fashion for the given scores matrix.
Step One searches for a new vector of the

loading matrix. That search is based upon
the dependence between the variables. The Example
method developed for this step is different then The data for the example come from a study
the one used in BMDP. This step is very im- of muscles of 796 subjects with muscle disor-
portant because at the beginning it is possible ders. The flexibility and strength of different
to incur only a small cost if the loading ma- muscles of the body were measured on a scale
trix is appropriately chosen. To exl)lain it in from 0 to 6. A 0 value means normal mus-
more detail, in the first step we must give a cle function. A 6 means completely rigid and
d dimensional 0 - 1 vector as the loading ma- weak muscle. A value between 1-5 means dif-
trix and one dimensional scores for each case. ferent levels of flexibility or strength. 45 dif-
Suppose that both costs cp = c, = 1. Con- ferent muscles were tested. For the purpose of
sidering the nature of the Boolean operations, a Boolean factor analysis the data was coded
we can initialize the algorithm with the load- by 0 and I in the following way: if the value
ing vector having all its components equal to of the variable was between 1-6, referring to
1. Then we define the scores for each case as abnormal muscle function, we code 1. In case
1 if the case has more I then 0 or as 0 oth- of one muscle the value of both variable flex-
erwise. The cost for each case, is the number ibility and strength was the same; eithur 0 or
of 0-s if the case has more I or the number of 6. This way we analyzed 89 variables for 796
1-s otherwise. Are there any loading vectors subjects.
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Table 1 shows an output of the Boolean fac-
tor analysis of the described data set. Us-
ing 9 factors the cost is only 1554. Because
cp = c, = 1 it means that B, the estimator
of D, of the coded data set, is different from
D in 1554 places out of 70844. Thus the pre-
diction error is only 2%. Table 2 shows the
nonzero coordinates of the column vectors of

the loading matrix.
The example shows that Boolean factor

analysis can be applied successfully not only
binary data set. The final prediction error is
very impressive considering the fact that the
new codes are producing larger error.
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MAXIMAL DISCREPANCY- 70844
MAXIMAL COST = 70844

## 1 MODELLVECTORS ##
COST = 5808.0000
DISCREPANCY= 5808 PDIS= 5090 NDIS= 718
PREDICTION ERROR- 0.08198 COST ERROR = 0.08198

## 2 MODELLVECTORS ##
COST = 2920.0000
DISCREPANCY= 2920 PDIS= 1930 NDIS= 990
PREDICTION ERROR= 0.04122 COST ERROR = 0.04122

## 3 MODELLVECTORS ##
COST = 2768.0000
DISCREPANCY= 2768 PDIS= 1780 NDIS= 988
PREDICTION ERROR= 0.03907 COST ERROR = 0.03907

## 4 MODELLVECTORS ##
COST = 2708.0000
DISCREPANCY= 2708 PDIS- 1751 NDIS= 957
PREDICTION ERROR= 0.03822 COST ERROR = 0.03822

## 5 MODELLVECTORS ##
COST = 2587.0000
DISCREPANCY= 2587 PDIS= 1664 NDIS= 923
PREDICTION ERROR= 0.03652 COST ERROR = 0.03652

## 6 MODELLVECTORS ##
COST = 2096.0000
DISCREPANCY= 2096 PDIS= 1052 NDIS- 1044

PREDICTION ERROR= 0.02959 COST ERROR = 0.02959

## 7 MODELLVECTORS ##
COST = 1814.0000
DISCREPANCY= 1814 PDIS= 861 NDIS= 953
PREDICTION ERROR- 0.02561 COST ERROR = 0.02561

## 8 MODELLVECTORS ##
COST = 1667.0000
DISCREPANCY= 1667 PDIS, 813 NDIS= 854
PREDICTION ERROR= 0.02353 COST ERROR = 0.02353

## 9 MODELLVECTORS ##
COST = 1554.0000
DISCREPANCY= 1554 PDIS- 783 NDIS' 771
PREDICTION ERROR- 0.02194 COST ERROR - 0.02194

Table 1
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Number of Factors 9
LOADING MATRIX

16 17 18 19 20 21 22 23 24 25 26 27 28 29 38 39 40 41 42 43
44 45

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
66 67 68 69 70 71 72 73 74 76 79 81 82 84

-* 3 ***

1 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

** 4 ***
46 49 51 52 58 59 60 63 65 66 75 77 78 80 83 85 86 87 88 89

-. * 5**
1 89

-* 6 *

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

** 7 ***

1 2 3 4 6 7 8 9 10 11 12 13 16 17 18 20 21 22 23 24
27 32 35 37 40 43 45

'~* 8 ***

6 13 20 27 30 32 38

,.* 9 ***

5 8 13 14 15 19 22 27 28 29 39

Table 2
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General Similarity Measures of Location Models
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Abstract (d) Kuliback & Leibler's information measure (1951):
00

AThe locationmodels'which canbe used in discriminant A1 (fi1 x))f (x) log [f()
problems when the data contain both categorical and 11 '2 j log Idx

continuous variables, requires separate continuous variables -00

means to be fitted for each possible pattern of categorical 00
responses. Several forms of similarity measure are reviewed. f2 (x) ,.
The problem of estimating similarity when the continuous A2 (O1 ,t 2 ) = J f2(x) log [ 1 x
variables of location models are multivariate normal -0f

distributions with equal covariance matrices across the

discrete states has previously been studied. In this work, the
assumption of equal covariance matrices is relaxed. The (e) Chemoff measure (1952):
explicit form of general similarity measure between two 00
location models is derived assuming general multivariate P l f 1 yla 2(j 1-dx , <a< 1
normal distributions. Estimation of parameters in this - 00
similarity measure is discussed.,.

(f) Matusita's distance (1955):1 Measures of distance and 00
similarity measures II F1 , F2 IIr = J [ (fl(x))l/r - (f2(x))l/r I r dx 11/r

Consider two populations ntI and n2 and a vector-valued - 00
This is essentially the same as Hellinger distance.

continuous random variable X defined over a space R such If the affinity between F1 and F2 is
that F, (x) and F2(x) are the distribution functions of X in 00
nI and n2 while fl(x) and f2 (x) are the corresponding p (f 1 (x f2(x)I 1 /2
density functions with respect to a suitable measure. For a P (F1 ,F2) = fl(x)f2(x)] dx
discrete random variable X, fl(x) and f2(x) will be treated as - 00

the corresponding probability mass functions. then II F1 , F2 1122 - 2 (1 - p (F1 , F2 ))

The following distance measures or similarity measures have (g) Morisita's similarity measure (1959):
been extensively studied: 00
(a) Hellinger distance (1907): 2 f f1 (X) f2(x) dx

pp (t1 ,x 2 ) { I[ fl(x)]l/P - [f2 (x)]l/P Ip dx IiP -00 .-00O

(b) Bhattacharyya distance measure (1946): f fl2(x) dx + ff 22(x) dx

0(n ,n 2 )=cos " p( 1 ,ic2 ) 00 -_

(h) MacArthur-Levins similarity measure (1967):
where p(itl n2 )= J[ fl(x) f2(x) 11/2 dx 0,

- 00 fi(x) (x) dx
(c) Jeffreys divergence measure (1946): Jf

S00ij 00 2 for ij = 1,2,i j.
f ,f2(x) fj x)d

(x0 02 )= (f2(x) - f0(x)) log ()ldX * fi 2 (x) dx
-00o -00o
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(i) Sibson's information radius (1969): individuals are drawn from 2 populations it,, It 2. The
I M fl(x) f2(x) location model was introduced by Olkin and Tate (1961) to

A Otl,R 2 11fl(x) logt +-f f2(x) log[f I }dx cope with the mixed variables, and this model has- Wc subsequently be applied to the two-sample case for tests of

where f(x)= ( hypotheses, for discriminant analysis, for clustering, for
2 (f(x) + f2 (x)) classification, and for medical diagnostics.

(j) Pianka's measure of overlap (1974): The q discrete variables (may be binary or categorical) are
assumed to define a multinomial vector Z containing d

0= c jc ejifor ij=l,2, itj . possible states, eg: for b binary variables and k three-state

00 categorical variables, d = 2b3

f fi(x) fj(x) dx Thus each distinct pattern of X define a multinomial cell
-00 , uniquely. XT = (X1 ...... Xq ) can be replaced by a random

112 fc cx 1 vector ZT = (Z1 ...... Zd ) and each Zi takes the value one

J fid(x) dx J dx 2  for a particular state of the original X's and zero elsewhere.
.c. -0 The probability of observing state m in population pi is

assumed to be pim (i=1,2; m=l,....d). Then conditionally on(k) Good and Smith (1987) General measures of similarity: Z falling in state m, the p continuous variables Y are

assumed to follow a multivariate normal distribution with
I (r . s ) = J [ f1 (x) r I f2 x Is dx mean (m) and dispersion matrix Ejm) in population ni

- tO I(r's) (i=1,2; m=l .... d). The only assumption embodied in this
and two alternatives: J ( r, s ) 2 model is normality, and this is imposed in most parametric
and o atrn s: (r,s) I(2r,O) + I(0,2s) techniques.and G( r, s) - I(r,s)

'I I(2r,0)I(0,2s) The location model can be defined asdT

The parameters r and s are weighting parameters and are f(z,P i t) = r I pim where PiT = 1' P 2 .....
i F1 Pim (Pi i'"li1

usually given the values i or 1. Note: Some of the above d d

measures will be special cases of these general similarity Pim = E(Zm I ti), Y zm I Pi
measures. For example, Bhattacharyya distance measure m=1 m=1

1 1  1 and fi(m)(y) = f (y 7rti ,z m =1, zk =0, In k = 1,2...,d)0(Tc nt,72 )=CS 1( 2 , j-), Chernoff measure is p(Rt1 X2)

= I( ct, 1- c ), Matusita's affinity measure is p ( F1 , F2 ) =
I( 2' 2 )' Morisita's similarity measure X = J(1,1) , The proposed model admits the following special cases of

a t e s r-) interest:
MacArthur-Levins similarity measure is 1(2,0) or L1 : the conditional dispersion matrix is constant for all statc
1(1,1) in each population, that isE X(M) = Ej (i=1,2: mn= ]_.,)I --I-0'1 and Pianka's measure of overlap is ox = G(1,1). i ahppltota sYi m  

i 012 ~ .. )

1(0,2) ' Homogeneous variance-covariance matrices across states
within population.

The above measures can be applied to the populations with

discrete distributions and probability mas functions. In this L2 : the conditional dispersion matrix is constant for all staic
case, summation over the possible states will be used in each population, that is l(m) - (m) 0=1.2; m=l.instead of integration. nec ouain hti i m) =E m  il2 =I...d!

Homogeneous variance-covariance matrices between

2 Location Models populations with respect to states.

L3 : the conditional dispersion matrix is constant for all staie

Suppose that p continuous or quantitative variables YT = in each population, that is -= (i=1,2; m= .d)
(Y1 ...... Yp ) and q discrete or qualitative variables XT = Homogeneous variance-co 'ariance matrices across statc al
(X1 ...... Xq ) are measured on each individual, and that wopulations.
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3 General similarity measures 1111:21 , 4 1  1

with mixed variables: 1 +1/2

Population 
case

Now consider the mixed variable case:

Let us derive the general similarity measures under the most The joint density of state m of the discrete variables and
relaxed conditions between two multivariate normal values of yi,...,y for the continuous variables is given by
populations - different means and different dispersion p
matrices, the product of the conditional and marginal densities as pi,

rs T -1 ~ () )
exp[- = 1 "1±2)T(s + (l'1.1.2)] fi(m (y ) "

I(r,s) = (19)(ylr 9-2]d 0
IL (r, s) = " { PImfi mI ) (m') }r( P2mf2 (m) (y) )s dy

m=1 - 00
I(2r,O) = 1 21E 1 I

(1-2 r/2 (2r) p /2  d r Sy
I I[ ( PIM P2 ms) f f(m)()r f(m) (y) }s dy

and 1(0,2s) = I 27t1Z 1(
I 2s)2 (2s) "P/2  m=1 0

d , P s Im(rs)}

J(r,r) m=1 im 2m m

2exp[(-rt2) (l-2) T(ry!+r..)" 1 (1-2)] where Im (r,s) is the general measure of similarity I(r,s)

lyq EIl(r-l)/2 1!(l+)l 11(1- 2r)t2 +,211-r)2) between N ( Z.i(m) Y.(m)) and N ( .i(m) , Zi(m) ) and can

be evaluated as the above. Krzanowski (1983) discussed the
exp [ - T( 2) (sslZ+rE2)-1 (11 - 12)] case with r = s = 1/2 for k populations.

G(r,s) - (4rs)l1E 2
1 1 4 Is, 1 +rE 2 

1I2 Moreover, two alternatives are

exp[ - ( ( +E2) "1 (11-12)] JL (r, s) = 2  IL(r,s) and
G(rr) - 2 -1/4 1 /2 IL( 2 r,O) +

l1 12 1 I + 12) 11GL( s IL(rs)
For r = 1s =, and when 11 = E2 L= r, ) L(2r,0i(0,2s

T1-
p = 4 ) = exp[ (91±  2 1: (111-92)] aMost of the measures discussed in section I will be special

X = J(1,1) = exp [- ( -" ) i1 ( -t2)] cases of the above general similarity measures when they arc
4(.1) -) ( 92)applied to the location models.

=X1 2 = (X2 1 = (2,0) - 1I(0,2) = G(l,).

These are the exponential forms of certain functions of 4 General similarity measures
Mahalabonis generalized distance (gl-g 2 )T E-1 (II--R2) • with mixed variables:

Sample case
Krzanowski (1983) derived the following for l 22,

p = 2 1 E1 
11/4 I T"2 1"1/4 II + El E2 " I " 1 / 2  In practice, the general similarity measures between two

2 groups of sample data will be evaluated. First, we can adopt
I - (VI, -v2j the procedures of Daudin (1986) or Krusinska (1989) to

p  [( -(I + }]
SexpI[-1 ) select the variables which will construct the location

Here X"=are the eigenvalues of E E* and v models; Daudin's procedure is based on Akaike's criterion
Here e i s "  lwhereas Krusinska's procedure is based on the multivariate

=1 ,...,p) are the coordinates of the population means in the discriminatory measure similar to the distance measure. To
transformed space. obtain the sample estimates of general similarity measures,

the simplest way is to treat the data in either group as a
Lu, Smith and Good (1989) derived sample from the corresponding population ti and to replace
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all parameter values by their sample estimates (maximum Matusita, K. (1955) Decision rules, based on the distance,
likelihood estimates in terms of conditional likelihood on for problems of fit, two samples, and estimation. Ann.
each state), and this may be called PLUGALL. As the of Math. Statist., 26, 631-640.
parameters r and s in the general similarity measures, Matusita, K. (1966) A distance and related statistics in
researcher will select the appropriate values multivariate analysis, in "Multivaraite Analysis I " (P.

or 1) to R. Krishnaiah, Ed.), 187-200, Academic Press, New

meet the forms of similarity measure in the applications. York.
For sufficiently large samples, the sample estimates of Morisita, M. (1959) Measuring of interspecific association
general similarity measures can be obtained for models L1 , and similarity between communities, Mem. Fac. Sci.
L2 and L3 . However, it would generally make sense to pool Kyushu Univ. Ser. E., 65-80.
across those categories which have relatively few Olkin, I., and Tate, R. F. (1961) Multivariate correlation
observation; that is, L3 is the common model may be models with mixed discrete and continuous variables,

encountered. The task remains is to evaluate the statistical Ann. Math. Statist., 32, 448-465.
properties of the estimators of various general similarity Pianka, E. R. (1974) Niche overlap and diffuse competition,

measures. The mathematical difficulties in deriving the Proc R. (196)Acad. Sci. USA 71, 2141-2145.

properties of the estimators are formidable, and consequently Sibson, R. (1969) Information radius. Z. Wahr. verw. Geb.,

we will evaluate the properties by the resampling methods - 14, 149-160.

jackknife and bootstrap. These results will be discussed
elsewhere.
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Abstract From a total of one million iterated applications of MD4,

each of the 16 byte positions of the one million outputs was

In theory, it is difficult to define a hash function which is examined for parity. The results of this test are shown in

capable of creating random data from nonrandom data. This Table 1. It is apparent that the null hypothesis cannot be

paper addresses the randomization properties of an rejected, indicating that each byte is equally likely to be odd

extremely fast, compact hash function. The MD4 message or even. In fact, the extremel) high P-value (.9813) might

digest algorithm produces a 128-bit output or "message lend statistical credence to the algorithm's "purposeful

digest" from an arbitrarily-long input string of bits. The smashing of bytes."

results of a variety af empirical tests which were conducted
to detect possible statistical defects in the algorithm are
presented. . Byte Chi-Square

Position Actual Expected Contribution

This paper presents the results of a statistical analysis of
the randomization properties of the MD4 Algorithm [7]. 1 500979 500000 1.916882
The MD4 message digest algorithm is a fast, compact hash 2 499412 500000 .691488
function which maps an arbitrarily-long string of bits onto 4 95 500000 .000
a 128-bit quantity. For a complete description of the 5 500513 500000 .526338
algorithm, the reader is referred to Rivest (7]. The 5 500513 500000 .526338
investigation of MD4 consisted of a series of six empirical 6 499849 500000 .045602
tests in which a large number of 128-bit outputs was 7 499780 500000 .096800
generated and then examined for randomness, or the lack 8 499808 500000 .073728
thereof. The results of these tests are as follows. 9 500624 500000 .778752

10 499776 500000 .100352

The first test conducted was a byte parity test. The 11 499787 500000 .090738

appropriate hypotheses for this Chi-Square test are presented 12 499922 500000 .012168

as follows: 13 500242 500000 .117128
14 499414 500000 .686792

H0 : Odd/Even parity of bytes are equally likely. 15 499939 500000 .007442

HI: Odd/Even parity of bytes are not equally likely. 16 500347 500000 .240818

Total 5.905678

P-value .9813

MD4 is the product of Ron Rivest, MIT Laboratory for
Computer Science, 1990.

Table 1. Byte Parity Test
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A second test conducted is a check for uniformity in the frequency of I's in each position. Table 3 provides the
bivariate distribution of byte position versus byte value, results of this test. These results again indicate uniformity
The hypotheses tested are as follows: across the 128 bit positions, i.e., each bit is equally likely

to be a 0 or 1.
H0 : Bivariate distribution of byte position vs byte value

is uniform. Bit Chi-Square
HI: Bivariate distribution is not uniform. Position Actual Expected Contribution

1 1,499,496 1,500,000 .169
Three million iterated applications of MD4 were performed, 2 1,500,769 1,500,000 .394
and the results of examining the decimal integer value of 3 1,501,119 1,500,000 .835
each byte in each of the three million outputs are shown in 4 1,500,256 1,500,000 .037
Table 2. 5 1,500,256 1,500,000 .044

Byte Position 126 1,499,975 1,500,000 .000
127 1,499,466 1,500,000 .190

2............ 16 128 1,500,624 1,500,000 .260

0 11645 11591 .......... 11678 Min = 1,498,191 X20 = 70.657
1 11722 11658 ........... 11780 Max= 1,502,403 df = 127

V P = .85
a
I Table 3. Frequency Test for Bit Positions
u
e The fourth test, a gap test, examined another set of one

255 11832 11823 ........... 11483 million outputs from MD4. Each output was scanned for
the number of 0's between successive I 's. For example, the

Bivariate Frequency Distribution string "10010110001" has gaps of 2, 1, 0, and 3,

E 1respectively. Table 4 shows the total number of observed
E(X) = 11718.75 X20 = 3895.87 gaps for gaps of size 24 or less. No gaps of size 25 or
Min = 11354 df = 4095 larger were encountered. The successive halving of the
Max = 12099 P = .54 number )f observed gaps for an incremental gap size of I is

what we would expect to see if the probability of a 1 or 0
Table 2. Uniformity of Byte Position vs Byte Value in each bit position is .5.

The results indicate that the distribution is indeed uniform.
One can also conclude independence between position and Gap Size Observed # Gap Size Observed #
value. That is, given a particular byte position, the byte 0 32,263,081 13 3,583
value is equally likely to be any of the 256 possible values. 1 16,247,658 14 1,793
Similarly, given a particular value, it is equally likely to 2 8,063,542 15 881
occur in any of the 16 byte positions. 3 4,001,042 16 421

4 1,984,905 17 209
A third frequency test was then conducted, this time at 5 983,004 18 121

the bit level. The hypotheses for this test are expressed as 6 488,068 19 59
follows: 7 241,362 20 27

8 120,025 21 18
H0 : The distribution of l's across all 128 bit positions 9 59,219 22 5

is uniform. 10 29,843 23 3
HI: This distribution is not uniform. 11 14,471 24 2

12 7,337
Another three million outputs from MD4 were generated
and each of the bit positions examined to determine the Table 4. Gap Test
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The fifth test conducted was one in which the difference 32,000-byte (256,000-bit) string and A' is also a 32,000-
(in absolute value) between the number of l's and the byte string which differs from A in only 1 bit position, we
number of O's occurring in each of one million outputs was then compared MD4(A) and MD4(A'), each being a 128-bit
noted. The observed (actual) frequencies, as well as string. We looked at the Hamming distance between
expected frequencies (under the assumption that a 0 or 1 in MD4(A) and MD4(A'), i.e., the number of bit position
any position is equally likely), are shown in Table 5. These changes that occurred between MD4(A) and MD4(A'). The
results clearly support the assumption. hypotheses tested can be described as follows:

H0 : The distribution of Hamming distances is binomial
Difference Actual Expected Chi-Square with n= 128 and p=.5.

HI: This distribution is not binomial with n= 128 and
0 70331 70386 .043 p=.5.
2 138539 138606 .032
4 132566 132306 .511 The frequency distribution of Hamming distances that
6 122122 122433 .790 occurred among the 30,000 comparisons is shown in the
8 109900 109829 .046 histogram of Figure 1.
10 94974 95504 2.941
12 80948 80496 2.538
14 65734 65757 .008
16 52053 52058 .000 Avalanche Effect
18 39905 39935 .023 2500
20 29959 29681 2.604
22 21426 21370 .147
24 14928 14903 .042 2000

26 10117 10064 .219
28 6508 6581 .810 zs50
30 4205 4165 .384
32 2532 2551 .142 0

34 1480 1512 .677 6.1000-
36 870 866 .018
38 490 480 .208
40 277 257 1.556 z 500

42 115 133 2.436
44 67 67 .000
46 32 32 .000 43 48 53 58 63 68 73 78 83 88
48 12 15 .600 Number of Bits that Changed

50 4 7 1.286 1
52 5 5.833 .119
54 0 2.436 2.436 Figure 1. Avalanche Effect: Hamming Distance
56 1 .980 .000

This figure suggests that, on the average, about half (64) of
X2 = 18.603 df = 27 P = .884 the bits will change. While this figure gives us an

indication of how many bits will change, Table 6 shows us
that, of the bits that do change, each of the bit positions

Table 5. Differences Between # of l's and # of 0's tends to contribute equally to the number of changes.
Clearly, the avalanche effect demonstrated is one in which
the outputs for two "almost identical" inputs appear to be as

A final test was conducted to examine the avalanche random as any other two randomly chosen 128-bit strings.
effect of MD4. A series of 30,000 comparisons was made,
where each comparison compared two outputs of MD4. The results shown here indicate that MD4 is a byte
The two outputs compared were the outputs corresponding smasher extraordinaire. These random properties of MD4,
to two "almost identical" inputs to MD4. That is, if A is a together with its speed and compactness, make it a



Statistical Analysis of MD4 73

potentially valuable tool for a variety of applications, 6. Patterson, Wayne. Mathematial Cryptology for
including virus detection and compressing large files prior Computer Scientisisand Mathematicians. Rowman
to signing them with a public-key algorithm such as RSA. & Littlefield, '1987.

Bit Position Actual Expected Chi-Square 7. Rivest, Ronald L. The MD4 Message Digest
Algorithm. Proceedings CRYPTO '90, pp 2 8 1-291.

1 14,995 15,000 .002
2 14,997 15,000 .001
3 15,123 15,000 1.009
4 14,956 15,000 .129
5 14,915 15,000 .482

126 14,855 15,000 1.402
127 15,029 15,000 .056
128 15,092 15,000 .564

Min = 14,811 X20 - 65.148
Max = 15,294 df = 127

P = .89

Table 6. Avalanche Effect: How often each of the 128 bit
positions changed in the 30,000 comparisons
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Abstract' that determine the "departure times" of customers inde-
pendently of the presence or absence of customers); the

We simulate several variants of a class of queueing net- same autonomous servers can be shared between all the
works - corresponding to different system parameter val- variants. We call this approach the Standard Clock (SC)
ues or operating policies - simultaneously. One clock technique [3, 6, 7] since a single simulation clock mecha-
mechanism is used to drive all the variants. This clock nism (that may be standardized) is defined which drives
synchronizes the system trajectories such that the "same all the variants simultaneously. This clock synchronizes
event" takes place at the "same time" at all systems. the system trajectories such that the "same event" takes
This synchronization is the basis of the massively par- place at the "same time" at all systems. The obtained
allel algorithms we develop. Implementation of the al- synchronization is the basis of the algorithms we develop
gorithms on the massively parallel Connection Machine for the implementation on the massively parallel Con-
and the implications of the approach for performance nection Machine (CM). This approach is applicable to
optimization is discussed. queueing networks that can be modeled as Generalized

Semi-Markov Processes (GSMP) with bounded hazard
rate event life times. For networks that can be modeled

1 Introduction as continuous time uniformizable Markov chains, SC is
based on the well known uniformization procedure.

There is an inherent partial parallelism in networks of An important feature of this approach is the concur-
queues. Often each server operates as an independent rent evaluation of the performance of the network at very
entity as long as customers are present to be served. The large numbers of parameter values or operating policies.
effect of other servers is experienced through idle peri- We believe this feature opens up new possibilities for
ods - where no customer is present - or blocked periods performance modeling and optimization. As a first step
- where no space is available for a served customer (to we consider a global random search for performance op-
illustrate we are considering a simple scenario). While timization of a queueing network.
the status of the servers (busy, idle, blocked) remains Section 2 defines our model of a single queueing net-
unchanged, they can be simulated independently and work; a parameterization of the model is considered in
in parallel. Most parallel algorithms for queueing sim- section 3; the Standard Clock algorithm and its mas-
ulation use this partial parallelism for simulating one sively parallel implementation is given in section 4, and
"large" network (see[41l. in section 5 we consider solving a stochastic optimization

In contrast, we consider the simulation of a "large" problem via massively parallel simulation.
number of variants of a "nominal" network that differ,
for example, in their routing schemes, buffer configura-
tions, service or arrival rates, or the number of customers 2 Model : systems driven by marked Poisson

in the system. Obviously there is a total parallelism processes
among the variants. More importantly, we simulate each
variant as a network of autonomous servers (i.e. servers Let (r,e) {(r ,, c,,); n > O} be a marked Poisson pro-

cess where {r,; n > O} is the sequence of arrival instances
'Thework in this paperwas partially supported by the National of a Poisson process N, and {e,,; n > O} is an I.I.D. se-

Science Foundation under Grant DDM-8914277. quence of discrete random variables, independent of the
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Poisson process N, such that en E E, where E is a finite 3 A parametric family of systems driven by
set called the set of events. the same marked Poisson process

Let S, a denumerable set, be the set of "physical"
states of the system. If upon the occurence of an event To consider several variants of a "nominal network" we
e E E, the state of the system is z E S, then the next parameterize the system with respect to a parameter of
state of the system z' E S is determined via a given state interest. The parameterization may be with respect to
transition rule: the number of buffers, buffer configurations, routing pro-

z' = f(z,e, W) (1) portions, number of customers, control policies, service
and inter-arrival rates or any combinations of the above.

W is a random variable used to model probabilistic tran- The parameterization of a model of the system can be ac-
sitions, complished through the state transition function f while

Let X(O) be the random variable of the initial state. leaving the marked Poisson process (r, e) unchanged.
The sequence of states {X(n); n > 1} is defined recur-
sively by X(n) = f(X(n - 1), e,n, W) and the process Example 3.1 : Consider the parameterization of ex-
X = {X(t); t > 0} is defined as follows: ample 2.1 through buffer configurations such that

_ ~ B = c .
X(i) X(T)I{Tr ! t < rn+lI for t > 0 (2) Let B = {(B 1,..., BK-1); Bi > 1, EiK 1 B = C). For

n=O each b E B let Sb be the state space corresponding to
configuration b, and let E, -, and c be as defined in

This model is quite versatile: open and closed networks example 2.1. The state transition rules for each config-
of queues with multiple classes of customers, Markovian uration b are defined by
routing, finite and infinite buffer spaces, and a variety of { b + ii > ,x
service disciplines can be modeled as such. Networks fb(b , di, W) = -I < B1 +1
with exponential service times and inter-arrival times -Z otherwise
provide the most staightforward examples but networks (for d, only z b < Bb, and for dg only z 1 > 0 is
with phase-type service times and inter-arrival times can required.)
be modeled as well by considering a more intricate state Note that the same (r, e) (model of the simulation clock
space. mechanism) is used for all b C B. The next section

To illustrate we consider a simple example: describes algorithms for using one clock mechanism to
drive many systems simultaneously.

Example 2.1 : Consider a tandem network of K expo-

nential servers with rates il, .. , ILK respectively. There
are Bi buffers between server i and server (i + 1) (i = 4 Standard Clock Algorithm and Massively
1,..., K - 1). We assume that there are no spaces at Parallel Implementation
the servers. There is an infinite supply of parts at server
1 and infinite space for finished parts after server K. Assume M variants of a "nominal network" correspond-
Server i begins processing a part only if the immediate ing to M distinct parameter values or operating poli-down stream buffer, i.e. Bi, is not full (the so-called cies are given. Assume further that the nominal system
communication blocking). In this case: can be modeled by the model described in section 2 andS omu (zic.. . K-i);0 < th Bs that the variants are parameterized through the stateE : {d .... di} (d = departure from server i) transition rules f as described in section 3. Let (T, ) ber arrival instances of a Poisson process with rate A the common marked Poisson process and f, ... , f' thestate transition rules associated with variants 1,..., M,Prob(eA d ) /A. respectively. The simulation algorithm consists of twoLet mr. be a (K - 1) dimensional vector with ith entry parts: algorithm A that simulates the clock mechanismequal to -1, (i + 1)the entry equal to 1, and all other (generates samples of marked Poisson process (r, r)) andentries equal to 0 (1 < i < K - 1). Let m1 -n a vector algorithm B that describes the simultaneous updating ofentres qua to0 ( < < K- 1. Lt M~i vetor the system states upon occurrence of events.
with (K - 1)th entry equal to -1 and all other entries
equal to 0, then Let E = {el,. .. ,eK} be the set of events. We use

f _, + 7N. if mi > 0, zi+l < Bj+1  the Alias method to generate samples of c,,. To use this
W otherwise method it is necessary to initially generate two K di-

(for di only zi < Bt, and for dK only zK-1 > 0 is mensional vectors R and A. We refer the reader to [2]
required.) for the algorithm to generate these vectors and assume
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here that R and A are generated. Then: We simulate algorithm A (i.e. the clock mechanism)
at the front end computer: at each tick of this clock the

Algorithm A: determining r+ and e,+ time and type of the "next" event is generated. Algo-
rithm B is implemented in a distributed fashion at the

1. generate t,,+,, a sample of an exponential r.v. with CM: each processor of the CM simulates a version of the
rate 1. system with a distinct parameter value. The event type
Set m",+1 = 76 + tn+1 /A. and time generated by the clock is broadcast to all pro-

cessors which in turn execute the instruction correspond-2. generate u,+l., a sample of a uniform(0, 1) r.v. Un~+ x ing to the event type. This execution is done according
let i = [Ku, +1] + 1 ([z] denotes the integer part of intohevntyp.Tsexcinisdeacrig
Z). to the parameter value at the processor. To illustrate

we consider the parallel implementation of the model of

3. generate v,+l, a sample of a uniform(0, 1) r.v. V,+, example 3.1 at a finite number (M) of parameter values:

if Vn+i R[i] then ,+ = Example 4.1 : The implementation of the clock mech-
else 6+ = A[i]. anism (Algorithm A) at the front end is trivial. To

This clock mechanism is simple and very efficient. In implement Algorithm B we define parallel variables

fact, except for the generation of vectors R and A, that 21,- .. , iK-I to represent the states of the systems at all

can be accomplished in O(K) and is performed only once variants: ii is an M dimensional parallel variable whose

at the beginning of the simulation, the execution of the every components is kept at a distinct processor. The

clock mechanism is essentially independent of K, the value kept at processor j is the number of customers at

number of events in the system. buffer i at the configuration associated with processor j.
Let X be the state of the variant j at time r,, Similarly we define parallel variables B1, .. ., BK-I (the

(j = 1,...,M). Then: jth component of bi, kept at processor j, is the number
of buffers between i and (i + 1)th servers at configura-

Algorithm B: updating the states of the systems at tion j). Assume that the event reported by the front

Tn+1 end (the clock mechanism) is di (for simplicity assume

(Assume that e,+l = e4 ) 1 < i < K - 1). To update the states of the systems we
proceed as follows:

1. generate w,+,, a sample of a uniform(0, 1) r.v. Define a logical parallel variable A as
W n~i. A = I1 if ii> 0,i+ < /f)i+1

2. Forj = M A = 0 otherwise
set X'(n + 1) = fi(X(n), ej, w,+) and execute the following code (the code is executed in

parallel on CM)

Massively parallel implementation set A = ( i > 0 and ti+l < Ai)
i= - A

The Connection Machine (CM) that we have used as ii+1 = ti+1 + A
the platform for the massively parallel implementation The component of A at processor j takes value 1 if xi > 0ftz+1 < B+ are both satisfied; otherwise it takesof the SC algorithm is a SIMD (Single Instruction Mul- and 1 a
tiple Data) computer. It consists of a large number of value 0 (these conditione are checked in parallel at each

small processors (32000 in our case) each with its as- processor based on local information at the processor).
sociated memory. All the processors operate under the The next two steps represent the movement of a part

direction of a serial computer, called the front end. The for all processors where A = 1 and no action for those

front end acts as a central control mechanism that directs where A = 0.

all processors as to the next instruction to be executed.
All processors then execute the same instruction; hence 5 Performance optimization
the name, Single Instruction Multiple Data (SIMD) sys-
tems (for more extensive description of parallel and dis- Such massively parallel implementations dramatically
tributed systems see [1],[4]). In massively parallel sys- increase our ability to generate data points (performance
tems the synchronization of the computational tasks is a estimates) for analysing and optimizing queueing net-
crucial element of the parallel implementation. The SC work performances. An immediate and important ques-
algorithm is particularly well suited for such implemen- tion to be answered is: what type of optimization alg-
tation. rithms are most appropriate in this context.



Queueing Networks 77

As a first step we have considered a random global were produced). The ranked configurations were also ob-
search approach on the parameter space. Due to a lack of served at T'4 = 7ooooo, T5 = r 0soooo to check for possible
space and to the preliminary nature of our investigation long term change in ranking. The Table below shows the
our discussion below will be informal, rank of 5 top configurations at T, T3 , T 4 , T5 .

Consider the following optimization problem:

config. R at T, R at Tj E at T R at T4
Max{J(0); 0 E O} (3) 570 1 1 1 1

1 321 19 4 2 12
where (6) =limTo g(X(6,wT), (w E 1 repre- 907 6 3 3 3

sents all the underlying randomness in the system). J(O) 1756 15 6 4 4
is, for example, some average steady state performance 127I 3 2 5
of the network at parameter value 0. To address this 1277 3

problem we proceed as follows: They correspond to the following allocatin of buffers
Let 01,..., M be M parameter values in 0 chosen (we have also included the number of parts produced at

randomly according to some distribution on E. We these configurations by Ts:
run X(0i ,.),...,X(OM,w,.) in parallel and evaluate
g(X(O,,w, Tb)),. .. , g(X(OM, w, Tb)) at different epochs b570  (1,2,3,3,2, 1,2,2,2,2), Parts produced = 2449.
T (k 1.?,...). At each epoch the parameter values b33 11 (1,2,3,2,2,1,2, 2, 3,2) Parts produced = 2397.
are ranked in descending order of g(X(Oi,w, T,)). We bo7 (1,3,3,2,2,1,2,2,2,2) Parts produced = 2385.
choose the best L parameter values at each T (those bl 075 (2, 2, 3, 2, 2, 1,2, 2, 2, 2) Parts produced 2378.
with highest value of g); when this population "stabi- b127 7  (1, 2, 3, 2, 2, 3, 1, 2, 2, 2) Parts produced = 2362.
lizes" (i.e. when there is a small migration in and out of
the population, or changes in ranking within the popu- References
lation) the simulation is stopped.

The following considerations has been the basis of our [1] Bertsekas, D.P., Tsitsiklis, J. N., Parallel and Dis-
approach: our objective is to find near optimal solu- tributed Computation: Numerical Methods, Pren-
tions to (3). For "large" values of M, and "reasonable" tice hall, 1989.
performance functions J(O), the top L parameter val-
ues at the termination of the simulation are expected to [2] Bratley, P. B., Fox, B., and Schrage, L., A Guide to
be "near-optimal" with "high probability", i.e. produce Simulation, Springer-Verlag, 1983.
performance measures that are close to Max J(O). Fur- [3] Ho, Y. C., Li, S., and Vakii, P., "On the Effi-
thermore, in the context of networks of queues they are cient Generation of Discrete Event Sample Paths
expected to reveal some of the "desirable" properties of under Different System Parameter Values" Alathe-
near-optimal variants. A concurrent comparison of sam-
ple performances of all variants is possible because in 37ti auto p
the SC simulation, all variants live in the same simu- 370, 1988.
lated world. This approach is identical to some of the [4] Righter, R. and Walrand, J.C., " Distributed Sim-
coupling methods of sample paths of stochastic processes ulation of Discrete Event Systems", Proceedings of
- by defining then on the same probability space - to es- the IEEE, Vol. 77, No. 1, pp. 99-113,1989.
tablish stochastic monotonicity [e.g. see 5]. [5] Shanthikumar, J. G. , and Yao, D.D. "Monotonicity

Example 5.1 : Consider the system of example 3.1 and Concavity Properties in Cyclic Queueing Net-
with the following modification: there are 11 servers in works with finite Buffers", Qu'ueing Networks with
the system and server i is Erlang(ri, A). Consider the Blocking H. Perros and T. Altiok, eds. Elsevier Sci-
problem of optimal allocation of 20 buffers between the ence pp.325-344, 1989.
servers in order to maximize throughput. In our exam- [6] Vaili, P. "Using a Standard Clock Technique for
ple A land (i, ...,i) =(1, 2,5, 4, 4,2,2,3, 2,5,2). Efficent Simulation", to appear in Operations Re-
4000 variants of the system (numbered 1 through 4000) search Letters. 1992.
were randomly selected and simulated in parallel on CM.
At T1 = rnooo, T 2 = rioooo, and T3 = Tisooo the parame- [7] Vakili, P. "Massively Parallel and Distributed Sim-
ters were ranked (the simulation was performed in about ulation of a Class of Discrete Event Dynamic Sys-
20 sec). By T3 , the top 20 ranked variants had "stabi- tems: A Different Perspective", Manuscript. 1991.
lized" (by this time in the "best" configuration 243 parts
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VERSION 3 OF GPSS/SAS COMPILER
Gretchen K. Jones, National Center for Health Statistics

Michael A. Greene, The American University

Abstract GPSS/SAS compiler translates a GPSS program into
a SAS program using the SAS language first.

This paper describes Version 3 of a GPSS Entities called transactions (for example,
compiler. GPSS is a discrete event simulation representing customers) move through these blocks.
language used to model queuing problems. The At any simulated instant, there may be many
complier was written in the SAS language (version transactions in different parts of the flow diagram.
6.06), which was chosen for three reasons: (1) it has Transactions can model the movement of customers
character string handling and other functions through a facility. Usually a transaction is on one of
required for a compiler, (2) the SAS language has a two lists, the current events chain (CEC), or the
full range of mathematical and statistical functions future events chain (FEC). Transactions on the CEC
that are used to extend the GPSS syntax and (3) the are moving or ready to move through the blocks in
statistical procedures in the SAS system are available the program. They can be held up if a block refuses
to preprocess data for the simulation or to entry or can be delayed. Transactions on the FEC
postprocess simulation output. will move later when the simulated clock reaches

The current version of the compiler implements their block departure time, at which time they will
much of the GPSS functionality and contains the be transfered to the CEC to continue progress. At
usual devices in a simulation language including a any instant of simulated time, GPSS tries to move all
clock mechanism, an event scheduler, a source of each current (CEC) transaction as far as possible
random numbers following a large number of through the block diagram. Every transaction has a
probability distributions and data structures to priority, which can be changed as it goes through the
represent queues and other required quantities. program. The CEC is in order of highest to lowest

priority, causing transactions of high priority to
I. Introduction move before those of lower priority at any given

A. Simulation Language simulated time. Transactions also have parameters
A simulation language is a computer language which may be used to carry data.

which facilitates the programming of models for
discrete-event simulations. It is useful for solving B. Why SAS?
queueing problems because it has constructs which
represent all the aspects of the queuing situation. It SAS was chosen as the language in which to write
is possible but tedious to program a simulation the compiler for the following reasons: (1) the
problem in a high level language such as Fortran. A completeness and flexibility of SAS as a
simulation language automatically handles many programming language (2) the capability for outputs
tasks such as maintaining a simulated clock, to be analyzed through the immediate access to SAS's
scheduling events and causing them to occur in the high quality statistics and graphics procedures, and
proper time-ordered sequence. In addition, most (3), SAS has good random number generators, built-
simulation languages automatically collect data in mathematical functions and character string-
describing the model's simulated behavior and print handling functions useful in parsing program coding.
out summaries of these data. Thus much of the The disadvantages to using SAS are that there are no
underlying logic of the simulation of the queuing multidimensional arrays and the execution speed is
problem is built into the simulation language. relatively slow.

We describe also in the paper how the compiler
performs typical functions such as storage allocation, C. Background on Previous Versions
symbol table maintenance, cross referencing, garbage
collection and error messaging. Applications for this The original version of the GPSS/SAS compiler is
compiler and some thoughts on using the SAS described in 'A GPSS-like Language in SAS for
language as the development are also discussed. Discrete Event Simulation' (Proceedings of SUGI,

A GPSS program consists of a sequence of 1988). At that time, the program consisted of a
statements, called blocks, which correspond to the single SAS data step. The GPSS language statements
boxes in the flow diagram of a queing model. The which were implemented were GENERATE,
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ASSIGN, TRANSFER, ENTER, ADVANCE,
LEAVE, AND TERMINATE. A. LEXAN, a lexical analyzer. Changes the free

The second version of the program is described format of the program, SIMDATA, to fixed format,
in 'How to Stop a Simulation' (Proceedings of SUGI, lowercase to upper case, does space compression,
1990). At this point, the compiler was separated into puts entities into labels, and reads in symbol
five data steps, in order for the work to be TABLES. It passes the analyzed GPSS program to
modularized (see figure 1). The main data steps PASS2.
were LEXAN, PASS2 and RUNSTEP. These data
steps call TABLES (which contains the symbol B. PASS2 does entity translation, symbol table
table),and ERRMSGS (which contains the error maintenance, storage allocation, macro variable
messages). LEXAN is a lexical analyzer those main creation for array dimensioning going into the
job is to translate free format mixed case input to INITIALS data set, syntax analysis, compile time
fixed format uppercase, and also to compress spaces. error messaging, translation of GPSS random number
The output from LEXAN is passed to PASS2, where calls to SAS random number subroutine calls, and
most of the compiling and code generating takes creation of the dynamic half of RUNSTEP, the file
place. Output from PASS2 goes into RUNSTEP, SELECT. It passes the compiled program to
where the simulation execution occurs. The RUNSTEP.
operation of the simulated clock, the scheduling of
events, and the movement of transactions from block C. RUNSTEP does the actual execution of the
to block is all a part of RUNSTEP. compiled code from SELECT and INITIALS.

In addition to the features implemented in Dynamic storage allocation is done from INITIALS.
Version 1, two new statements were implemented in Also done are garbage collection from parameter
Version 2: REGS (regenerative start), and REGE arrays, run-time error messaging, simulation event
(regenerative end), blocks which cause counting of tracing and output in the form of REPORT.
the number of transactions and waiting times .
These features were meant to be used to collect III. Examples and sample output from the compiler.
queue statistics. This then permits stopping the
simulation after a completion of enough events to The text below describes how GPSS operands are
allow interval estimation of parameters with translated into SAS statements by the compiler. The
appropriate precision. usual form of a GPSS language statement is:

LAB OP-FLD AUX OPRNDS
We have now completed Version 3 of the compiler. where LAB refers to LABEL, OP-FLD refers to
Version 3 has the same structure as Version 2, but OPERAND-FIELD, AUX refers to AUXILIARY,
implements a much larger subset of GPSS including and OPRNDS refers to OPERANDS. LABELs
MATRIX handling, parameters, GATES and identify either the statement or the entity such as a
LOGIC, TEST, etc. STORAGE or a MATRIX. In Figure 2

below, the first line has the label "MIKE" which is
the name of the matrix to be dimensioned. Labels

II. The structure of our Compiler. are sometimes optional. OPERATION FIELDs
Version 3 consists of three main data steps define the purpose of the GPSS statement. Line I

working with 5 files. Figure 1 below shows the way has the operation "MATR(IX)" which causes
they work together. dimensioning. Line 5 has operation "GENE" or

"GENERAT" which causes production of a
Figure 1 transaction. Auxiliaries are adjuncts to operations

Compiler Phases which further define the operation. Line 8 has an
auxiliary, to TEST on LESS THAN. Operands (up
to 8) are found to the right of operations (or

SIMDATA ------ >LEXAN< ------- TABLES auxiliaries if present).
I

SELECT< ------- PASS2 ------ >INITIALS
I I I
I------ > RUNSTEP< ------- I

IREPRTK
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Figure 2 extension to the language.

MIKE MATR 3 2
INIT M$MIKE(3,2) I Figure 3
INIT X$JON 2

XEROX STOR 2
LABELI GENE RANUNI(X$JON) 2 15.. 21 When (005) DO;

MSAV MIKE 3 2 M$MIKE(3,2)+l TEMPOII = X{00);
ASSI I M$MIKE(3,2) CALL RANUNI(TEMPOI 1,_TIOI);
TEST L M$MIKE(3,2) 12 SKIP X{001 I) TEMPO 11;
ENTE XEROX TI = TI0I;
ADVA 5*PI T2 =.
LEAV XEROX _T3 = 15;

SKIP TERM I T4 =
STAR 4 T5 =.;
END T6 = 2;

END;

Figure 2 represents nearly original GPSS source The main data structures in RUNSTEP are those
code which has been processed by LEXAN. associated with transactions TA(*}, NEXT(*},

The program is changed by PASS2. PASS2 _PARMTX(*)(the parameter array), and block
performs GPSS Entity translation, symbol table arrays (BLKTYPE(*), BLKAUX(*), BLKCNT(*)
maintenance, storage allocation, macro variable and BLKMISC{*}). The transaction array is
creation for array dimensioning, syntax analysis, dimensioned beforehand to the best guess at the
compile-time error messaging, translation of GPSS maximum number of active transactions * 10. The
random number calls to SAS random number block arrays are dynamically dimensioned to the
subroutine calls, and creation of the dynamic block counts in INITIALS (see figure 4). The
portions of RUNSTEP. In that part of the program, blockarrays contain information which is specific to
GPSS labels are assigned to SAS variables and the blocks. Filling the block arrays is the last step in
initialized, storage for various GPSS entities is compilation and is done in the beginning of
created, GPSS operands are translated to SAS RUNSTEP. BLKTYPE{*) gets a number
expressions and pointers of various types are set up. representing the operation field of the block.
Then RUNSTEP (Section III. C. above) needs only BLKAUX(*) gets the auxiliary operand.
two pieces of information, (1) the type of operation BLKMISC(*) is used for miscellaneous operations on
field being executed, and (2) the values of the blocks such as the value of the logical evaluation of
operands at the time the statement is being executed. the test block, etc. BLKCNT{*) is the block count
The operation field code is passed through the or the number of transactions which have passed
PASS2 SAS dataset, while the operands values are through the block.
obtained in one of the dynamic portions, the TA(*) is a linked list with the pointers in
SELECT File. NEXT(*). TA*) contains most of the relevant

The SELECT file evaluates the operands and the information about the transaction including its block
final values are set to be TI,__T2, ...etc up to T8. departure time (BDT), number, current block
Figure 3 shows the SELECT file for statement occupied by the transaction, transaction status
number 5. (LABELI GENE ...) First a temporary (active,blocked or terminated),maximum number of
value is set to the first savevalue, X{001 ). Then a parameters, pointer to starting place in the parameter
call to RANUNI is made with X$JON as the seed, matrix(_PARMTX(*)) and priority). BDT
the random number being put in _TIO. Then represents the time that the transaction may be
X$JON is set back to the new seed, _TI is set to moved from its current block. Transactions are
_TIOI, the first operand. The third operand is set linked by BDT and priority, that is NEXT(i) points
to 15, and the sixth to 2. What is occurring is that to the transaction with the same (and lower priority)
PASS2 is translating GPSS code into SAS code which BDT or next larger BDT. This allows scanning the
then gets appended to the end of the RUNSTEP data transaction array from the beginning in order to find
step. In this manner any valid SAS statement can be the next transaction to be moved. Transactions are
used as GPSS operands, representing a substantial inserted in the Ta{*) array when created in the
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GENERATE block and removed when they move test this using practical applications in the near
through the TERMINATE block. The position of future.
the transaction may be modified by traversing
through an ADVANCE (which causes revision of the
BDT) or a PRIORITY block (changing the priority). REFERENCES

Before beginning the simulation, at the point
where each GENERATE block is symbolized, its Jerry Banks, John S. Carson,II and John Ngo Sy
first transaction is made, space allocated in the (1989), Getting Started with GPSS/H. Wolverine

PARMTX(*) array, its block departure time Software Corporation, Annandale, VA.
computed, and it is installed in the TA(*) linked list.
The first transaction is then taken off the top of the Paul Bratley, Bennett L. Fox and Linus E. Schrage
linked list and the simulation clock is set to its BDT. (1987), A Guide to Simulation, 2nd edition.
Then the following pattern ensues: Springer Verlag, New York.
I. The transaction is moved as far a it can be

moved. It is then destroyed or put back into the Kenneth A. Dunning (1981), Getting Started in
linked list. GPSS. Engineering Press, Inc. San Jose, CA.

2. The next transaction is identified. Michael A. Greene and Gretchen K. Jones (1990),
"How to Stop a Simulation," Proceedings of the SAS

3. The simulation clock is updated if required to Users Group International, SAS Institute, Cary, NC.
the block departure time for the next
transaction. Michael A. Greene and Gretchen K. Jones (1991),

"Enhancements to the GPSS/SAS Compiler,"
4. If the termination counter is zero, the simulation Proceedings of the SAS Users Group International,

stops, otherwise return to step 1. SAS Institute, Cary, NC.

Figure 4 James 0. Henriksen and Robert C. Crain (1989),
GPSS/H Reference Manual, 3rd edition. Wolverine

INITIALS Software Corporation, Annandale, VA.

ARRAY M * M1 - M7; IBM (1971) General Purpose Simulation System V
ARRAY OFF () _OFFI- _OFF2; User's Manual, 2nd edition. IBM, N. Y.
ARRAY NC *) NCI- _NC2 ;
ARRAY X {*) Xl - X2; Gretchen K. Jones and Michael A. Greene (1988),
ARRAY BLOKTYPE (* BTI- BTI5; "A GPSS-like Language in the SAS System for
ARRAY BLOKAUX (*) $27 BXl - BXI5; Discrete Event Simulation," Proceedings of the SAS
ARRAY BLOKCTS (* BCTSI - BCTSI5; Users Group International, SAS Institute, Cary, N.
ARRAY BLOKCNT (* BCNTI - BCNT15; C.
ARRAY BLOKMISC (* BMISI - _BMISI5;
ARRAY STORCAP (* STCI - _STC2; Gretchen K. Jones and Michael A. Greene (1989),
ARRAY STORUSE (* STUI -_STU2; "A Prototype Implementation of GPSS in SAS,"

Simulation, January.

RETAIN SAS Institute Inc. (i990), SAS Language: Reference,
_STCI 2 _STUI 0 Version 6, First Edition. SAS Institute Inc., Cary,

NCI 2 OFFI I NC.
NULL 0000
LABELi 0006 Thomas G. Schriber (1974), Simulation Using GPSS.
SKIP 0013 John Wiley and Sons, New York

Conclusion:
We think the third version has represented a

substantial extension over other versions. We plan to
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Applying Bootstrap Methods to Simulation

Output Analysis

Charles B. Rea, Wei-Kei Shiue and Chong-wei Xu
Southern Illinois University at Edwardsville

Abstract studied again using regenerative method in section 4.
Comparisons are made of Jackknife and bootstrap confi-

Confidence intervals obtained by bootstrap methods and dence intervals for the steady-state average delay in the
normal approximation are compared, based on out- system. Section 5 includes some conclusions.
put data from terminating and steady-state simulations.
Bootstrap intervals are equal or better than normal ap-
proximation intervals in actual probability coverages. 2 Bootstrap Methods
Furthermore, bootstrap methods capture the skewness
in the distribution of outputs and, therefore, are more Bootstrap method is a resampling scheme. It uses a
desirable than normal approximation. given set of independently identically distributed obser-

vations Y = {X 1,... , X,} from an unknown distribution
F to construct an empirical distribution P. Random

1 Introduction samples Y*,..., Y1 are then taken from F. This is the
same as sampling from {X 1 , .. ., Xn} with replacement.

Computer simulation is a method for studying a system Suppose is the parameter of interest and 0 is an es-

or process which is far too complex to easily derive ana- timate of . The bootstrap estimates t,..., i can be

lytic results for performance measure of interest. Usually calculated from 1,. , , which are used to assess the

several simulation runs are conducted and the result- alcula cy o . . . , b t i sr bu to a , de

ing utpt daa ae emloyd t mak inerene aout accuracy of 0 or to form bootstrap distribution G, de-ing output data are employed to make inference about fined by~ -s r0 sngahad(-~hpr

performance measure; for instance, the average delay in finie o() = Pr[ 9 si. Using th and (I-a)th per-

the ueuingsysem.Her we ssue pope stps ave centiles of G as endpoints of interval will yield a (1 - 2ai)the queueing system. Here we assume proper steps have 100% confidence interval for 6. This is the simplest of

been taken so that the outputs from either terminating bootstrap methods for constructing confidence intervals

or steady- state simulation are independently and iden- a p ed rcont rcting ( d)r

tically distributed. Law [4] gives precise definition of the and is called percentile method (P).
Improvements on the percentile method have been

two types of simulations. In this article the regenerative prosed, snoticably ethebiasecorectedhprcentil

method is considered for the case of steady-state simu- proposed, noticeably the bias corrected percentile

lation. Central limit theorem (normal approximation) is method (BC) and bias corrected percentile acceleration
the most common technique for constructing confidence method (BCa). Edgeworth expansion technique can be

itervl most c omnce fore. conscing cofenca e employed to get asymptotic expressions for the endpoints
interval for performance measure. This is because it is of the BCa, BC and percentile intervals for the case of

easy to use and, when the size of replications is large, it esti a th an en, i [2].

yields very accurate results. However, it does not cap-

ture the asymmetric nature of underlying distribution
of the output data. Since the distribution of data is O(wca)[a] = i + -{t(a) + a[2t 2 (a) + 1]} (1)

rarely known, we are dealing with nonparametric situa-

tion where bootstrap method [31 proves to be useful in (Bc)[] = $ + -{t(a) + a[t2(a) + 1]} (2)

that it takes into account of asymmetry involved and is
as easy to implement as normal approximation. A brief
description of bootstrap methods and related confidence O(p)[a] = + = {t( ) + a) (3)
intervals for a mean are given in section 2. Section 3
contains confidence intervals obtained by the two meth- where i and s are the mean and standard deviation of
ods for M/M/I queue and reliability model, which are the data, t(a) is the ath percentile of t distribution with
pertinent to terminating simulation. M/M/1 queue is (n - 1) degrees of freedom and
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- 3 Sample Size 20 40

a -[=.( _) Normal App. .880 A- .024 .882 ± .0246[E = X - i)211.5
)i= 2.- Bootstrap(P) .880 ± .024 .886 ± .023

Bootstrap(BC) .876 4- .024 .894 4- .023
Thus, (O(p)[a], O(p)[I - a]) gives a (1 - 2a) 100% confi- Bootstrap(BCa) .880 ± .024 .894 ± .023

dence interval for u by the percentile method.

3 Confidence Intervals for Ter- Table 2 - Estimated Coverage Results for Model 2
(Weibull Model)

m in atin g S im u latio n Sample Size 5_ 10Sample Size 5 1 10

In order to compare bootstrap methods with normal ap- Normal App. .700 ± .034 1 .758 ± .032
proximation, we study the following systems. Bootstrap (P) .710 ± .033 .732 ± .031

Bootstrap (BC) .738 ± .032 .790 ± .030
" Model 1 - M/M/1 queueing system with utiliza- Bootstrap (BCa) .740 ± .032 .790 ± .030

tion factor p = 0.9 ([5], p.2 8 9 ). Assuming that the
number of customers in the queue at time 0 is zero, Sample Size 20 40
the performance measure of interest is the expected Normal App. .816 ± .029 .840 ± .027avera ge delay in the queue for the first 25 customers Bootstrap (P) .820 ±- .028 .838 ±- .027
entering the system, which is 2.124. Bootstrap (BC) .836 ± .027 .842 ± .027

" Model 2 - Reliability model ([5], p.289) consisting Bootstrap (BCa) .780 ± .030 .842 ± .028
of three components, each of which has a lifetime
following Weibull distribution with shape parame- The distributions involved are quite skewed as indi-

ter 0.5 and scale parameter 1.0. The model is struc- cated by the sample skewness, which are 1.755 and 5.35
tured in such a way that the system will function as for model 1 and 2, respectively. However, equation (4)
long as component 1 works and either component 2 always provides symmetric interval that is of course un-
or 3 works. The performance measure of interest is realistic. The asymmetry of a confidence interval for
the mean lifetime of the system, which can be shown mean can be described by the asymmetry coefficient, de-
to be 0.778. fined by -B where UB and LB are upper and lower

confidence bounds respectively. Table 3 and 4 contain
The (1 - 2a) 100% confidence interval for the measure the values of coefficient for each model. It is apparent
of each system, based on the central limit theorem, is that all bootstrap intervals capture this asymmetry.

I+(1 - a) _' (4)
Table 3 - Asymmetry Results for Model 1 (Terminating

and the corresponding bootstrap confidence interval are M/M/1 Queue)
given by equation (1), (2) and (3).

500 simulation runs are conducted for each model and, Sample Size 5 10 20 40
for each run, replication sizes n = 5, 10, 20 and 40 are Normal App. 1.000 1.000 1.000 1.000
considered. The true confidence level is 90%. The actual Bootstrap (P) 1.046 1.061 1.056 1.049
coverage probabilities along with 90% confidence interval Bootstrap (BC) 1.282 1.299 1.243 1.201
of the true coverages are summarized in table 1 and 2. Bootstrap (BCa) 1.580 1.598 1.468 1.378

Table 1 - Estimated Coverage Results for Model 1 Table 4 - Asymmetry Results for Model 2 (Weibull
(Terminating M/M/1 Queue) Model)

Sample Size 5 10 Sample Size 5 10 20 40
Normal App. .844 ± .027 .868 ± .025 Normal App. 1.000 1.000 1.000 1.000
Bootstrap(P) .842 ± .027 .874 ± .025 Bootstrap (P) 1.075 1.100 1.109 1.101
Bootstrap(BC) .838 ± .027 .880 ± .024 Bootstrap (BC) 1.504 1.525 1.517 1.452
Bootstrap(BCa) .840 ± .027 .882 ± .024 Bootstrap (BCa) 2.155 2.165 2.122 11.944
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More evidence for supporting the asymmetric correct- 4 Confidence Intervals for Re-
ness of bootstrap confidence intervals can be found by generative Simulation
studying a system of which the performance measure can

be derived analytically. In this section an example of steady-state simulation is

considered.
e Model 3 - Estimation of mean service time for

M/M/1 queueing system when the actual service * Model 4 - M/M/1 queueing system ([5], p.300)

times follow exponential distribution with mean 1. with utilization factor p = 0.8. The regenerative
method developed by Crane and iglehart [1] gener-

The (I - 2a) 100% level exact confidence interval for ates Y1 and X, for each regenerative cycle, where Y

the mean service time can be calculated by represents the total delay in the queue of all cus-
tomers served in the ith cycle and Xi represents the

2.ni 2nx ] total number of customers served in the ith cycle.

[X2.(1 - C)' X'n(a)J The performance measure of interest is the steady-EY

state average delay in the queue given by R = E(X

where X2(a) is the ath percentile of chi-square distri- 3.2.

bution with m degrees of freedom.

Table 5 contains the average endpoints of normal ap- An estimator for R is R = - but R is not unbiased.

proximation and bootstrap confidence intervals based on Jackknife technique can be employed to reduce bias and

500 simulation runs. The endpoints of exact intervals are to construct confidence interval for R as follows.

also included. Exact intervals are asymmetric. Boot-

strap intervals converge to them as n-oo, with BCa 1. For each i, compute zi, where

intervals being most correct. For this model the prob- Fn=Ij i y

ability coverages of bootstrap methods are better than zi = n- (n-i)
normal approximation. Sample skewness of the data is X - 1  X,
2.091 and asymmetry results are given in table 6.

2. A (1 - 2a) 100% Jackknife confidence interval is
given by

Table 5 - Comparison of approximate confidence
intervals for model 3 versus exact confidence interval , t(1 -a)-

Sample Size 5 10

Normal App. 0.174, 1.836 0.463, 1.550 where i and d, are the mean and standard deviation of

Bootstrap (P) 0.193, 1.855 0.481, 1.567 zi's.

Bootstrap (BC) 0.279, 1.941 0.539, 1.625

Bootstrap (BCa) 0.366, 2.027 0.579, 1.683 Note that as estimator for R, , has much less bias

Exact 0.546, 2.538 0.637, '.843 than R. There is no closed form expression for bootstrap
confidence interval for the ratio of two means problem.

Sample Size 20 40 However, a crude bootstrap procedure can be applied
directly to (Y, X,) to obtain confidence interval.

Normal App. 0.625, 1.360 0.740, 1.259 Let d = {el,e2, ... ,e,), with ej = {Y,X}, i =

Bootstrap (P) 0.636, 1.372 0.747, 1.266 1,2 .

Bootstrap (BC) 0.671, 1.407 0.766, 1.285

Bootstrap (BCa) 0.705, 1.441 0.785, 1.304 1. Draw independent bootstrap samples, di,...,dXt

Exact 0.717, 1.509 0.785, 1.325 by sampling from {e1,e 2 ,.. ,en} with replacement;

2. Calculate from di,..., d , the statistics

Table 6 - Asymmetry Results for Model 3
A. +R1 and j 2 =A A4

Sample Size 5 10 20 40 where R; = yj/x-; is calculated from d?;

Normal App. 1.000 1.000 1.000 1.000 1

Bootstrap (P) 1.047 1.066 1.065 1.053 3. Draw a bootstrap sample, say, d* and compute

Bootstrap (BC) 1.291 1.322 1.287 1.220 y/-; Regard d* as original data, repeat step 1

Bootstrap (BCa) 1.600 1.650 1.562 1.418 and 2 to obtain S; 2 and Q' = (. S.
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4. Repeat step 3 B times, and obtain, say, Q ,..., Qj; produces reasonable probability coverages for the ratio
of means in the regenerative process.

5. Sort Q], ... ,Q and construct bootstrap distribu-

tion Gj*; References
6. Let z and z*_G be respectively 0!th and (1 - a)th

percentiles of G*, then O[a] = iR-z . and 0[1-o] = [1] Crane, M.A. and Iglehart, D.L. Simulating sta-
R- z*S are the endpoints of a level (1-2a) 100% ble stochastic systems iii : regenerative processes
confidence interval for R. and discrete event simulations. Operations Research,

23:33-45, 1975.
The rationale behind the crude bootstrap is using

bootstrap distribution G* to approximate the distribu- [2] Efron, B. Better bootstrap confidence intervals.
tion of 1 and approximation is enhanced by considering Journal of the American Statistical Association,
standardized A. The precision of bootstrap intervals de- 82:171-185, 1987.
pend on A and B, which are 80 and 1000 respectively [3] Efron, B. The jackknife, the bootstrap, and other
in this study. In practice, A in the range of 25 to 100 resampling plans. CBMS-NSF Regional Confidence
will give reasonable results. There is little gain in preci- Series in Applied Mathematics, 38:5-11, 1982.
sion past A = 100. Guideline for determining B value is
stated in [2] (p.181). Table 7 contains the coverage re- [4] Law, A.M. Statistical analysis of the output data
suits of the two methods based on observations from 200 from terminating simulations. Naval Research Logis-
experiments. The true confidence level is 90%. Jackknife tics Quarterly, 27:131-143, 1980.
confidence intervals are easier to compute, but crude
bootstrap intervals provide much improvement in coy- [5] Law, A.M. and Kelton, W.D. Simulation Modeling
erage probability. An interactive program implement- and Analysis. McGraw-Hill, 1982.
ing the bootstrap algorithm mentioned above is available
from the authors.

Table 7 - Estimated Coverage Results for Model 4
(Steady-state M/M/1 Queue)

Sample Size 64 128
Jackknife .630 ±.056 .700 ±.053
Crude Bootstrap .735 ±.051 .800 ±.046

Sample Size 256 512
Jackknife .770 ±.049 .775 ±.049
Crude Bootstrap .825 ±.044 .872 ±i.039

5 Conclusion

The purpose of this article is to illustrate the useful-
ness of bootstrap methods in constructing confidence in-
tervals for performance measures in simulations. For
one mean problem, normal approximation and boot-
strap methods are equal in actual probability coverages
and computations involved. However, only bootstrap
methods can capture the skewness in the underlying
distribution. Either BC method or BCa method can
be recommended in place of the normal approximation.
Computations in crude bootstrap procedure are inten-
sive but manageable. Compared to Jackknife method,
crude bootstrap appears to be the only nitlod, which
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Relational Databases: A Tutorial for Statisticians

JOE R. HILL
EDS Research, 5951 Jefferson St. NE, Albuquerque, NM 87109

Abstract This tutorial will not cover

This tutorial links relational database concepts to prob- * Anything about particular relational database man-

ability concepts. For example, the fundamental rela- agement systems.

tional database concepts of an attribute (column head- e Network, hierarchical, or object-oriented database
ing), a relation scheme (unpopulated table), and a re- models.
lation (populated table) correspond respectively to the
probability concepts of a random variable, a random vec- * Distributed databases.
tor, and a multivariate probability distribution. The Basic references for relational databases include Godd
relational select and project operators correspond re- (1970), Date (1986), Maier (1983), and Ullman (1982).
spectively to finding a conditional and marginal distri- More advanced references include Fagin (1977), Fagin,
bution. Functional dependencies, multivalued depen- Mendelzon & Ullman (1982), Beeri, Fagin, Maier & Yan-
dencies, and join dependencies correspond respectively nakakis (1983), and Beeri & Kifer (1986a, b, 1987). Con-
to variable transformations, conditional independencies, nections to probability theory are mentioned in Pearl
and more general factorizations of distributions. These (1988), Geiger & Pearl (1988, 1990), Geiger, Paz & Pearl
connections indicate t(1991), Lauritzen & Spiegelhalter (1988), and Thoma
about relational databases than they realize. Beyond (1989).
these pedagogical benefits, these connections between re-
lational databases and statistics provide a bridge, both
directions of which have proven to be useful for develop- 2 Database Concepts and
ing new theory. Probability Parallels

1 Introduction This section defines the basic database concepts and the
parallel probability concepts. The definitions are given

This tutorial will cover: in parallel because familiarity with the probability con-
cepts might help the reader understand the essential

" Relational database concepts and probability paral- ideas underlying the database concepts. Also, as sec-
lels (Section 2). tions 4, 5, and 6 show, there are parallel problems and

" An introduction to database normalization theory results in the two fields.

(Section 3). A relation scheme (table skeleton) R is a set of at-
tributes (column headings). A relation (table) over rela-

* Parallel theorems for consistent databases and con- tion scheme R is an indicator function for a set of tuples
sistent sets of marginal distributions (Section 4). (rows), written r[R]: r[R]() = 1 if the tuple t is in the

relation; r[R](t) = 0 if t is not in the relation. When
" Finding closures of sets of multivalued dependencies storing or writing out a relation, it is common to list

and sets of conditional independencies (Section 5). only those tuples that are in the relation (i.e. that have

" Eliminating intersection anomalies in sets of con- r[R](t) = 1).

ditional independencies and sets of multivalued de- The parallel concepts in probability theory are a ran-

pendencies (Section 6). dom vector and a probability distribution. A random
vector V is a set of random variables. A distribution for

" Concluding remarks (Section 7). the random vector V is a probability function, written
p[V]. The distribution of V evaluated at v is written
PI](M.
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AIRLINE EXAMPLE (Maier, 1983). Relation schedule The conditional distribution of V given X = x, X C
contains scheduling information for an airline. Relation V, based on p[V], written p[V I X = z], is the probability
schedule is defined over the relation scheme with at- function:
tributes FLT, FROM, TO, DEP, and ARR. The first
tuple in schedule, tI, maps FLT into 84, FROM into p[V I X = Z(v) = p[V](v)/p[X](r)
O'llare, and DEP into 3:00pm. The projection of tI onto{FROM, TO} is t1[FROM, TO] =(O'lHare, JFK). if p[X](z) > 0 and v[X] = z; p[V I X = z](v) = 0

otherwise. The Y-margin of the X = x conditional is
written p[Y I X = x].

schedule AIRLINE EXAMPLE. The following table shows the

FLT FROM TO DEP ARR data for flights from JFK.
84 O'llare JFK 3:00pm 5:55pm
109 JFK Los Angeles 9:40pin 2:42am
117 Atlanta Boston 10:05pm 12:43am FLTR°MRM T (schedule)FLT FROM TO DEP ARR
213 JFK Boston 11:43am 12:45pm 109 JFK Los Angeles 9:40pm 2:52am
214 Boston JFK 2:20pm 3:12pm 213 JFK Boston 11:43am 12:45pm

The basic operators on relations are a projection of a
relation onto a subset of its attributes, a selection from Let rI[R] and r 2 [R2] be relations over relation

a relation of the tuples having a specific value for a sub- schemes RI and R 2. Let X = Ri - R 2 , Y = RI n R2 ,

set of its attributes, and a join of two relations. These Z = R 2-R I . The join of ri [R1] and r2 [R2] is the relation

operators correspond to a marginal distribution, a con- over RUR 2 = XYZ (XYZ is shorthand for XUYUZ)

ditional distribution, and a product of two functions. defined by

The projection of the relation r[R] onto X C R,
written rJX] or xx(rRJ), is the indicator function: (ry, r)X I' ',) =ri[XYI(r' )r2YZ]('jz).

r[X](z) = 1 if there is a tuple I such that r[R](t) = 1 Let h1 [V1] and h2 [V'2] be functions over variable sets
and t[X] = x; r[X](x) = 0 otherwise. VI and V2 . Let X = VI - V2 , Y = V nl V2, Z = V2 - V,.

The marginal distribution of X C V based on p[V], The product of h1[' 1] and h2[V2] is the function over
written p[X], is found by summing p[V] over the vari- I U V2 = XYZ defined by
ables not in X; that is, letting Y = V - X,

p[x]rW = Ej p[x Y] (, Y) (hi ® h2 )[XYZ](z, Y, z) = hi [XY](x, y) h2 [YZ](y, z).

Y AIRLINE EXAMPLE. Relation usable contains the

AIRLINE EXAMPLE. The following tables show tile equipment requirements for each flight. Relation
proections ofhedPl e oow tDE as sote certified contains the equipment qualifications for each

pROc pilot. Suppose we want to know the pilots that can fly

each of the flights. To find the answer to this query,

we first form options = usable N certified. Then we

7rDEP, ARR(schedule) FnoM(schedule) project options onto FLT and PILOT, providing the an-
DEP ARR FROM swer to the original query.

3:00pm 5:55pm O'Hare
9:40pm 2:42am JFK usable certified

10:05pm 12:43am Atlanta FLT EQPMT PILOT EQPMT
11:43am 12:45pm Boston 83 727 Simmons 707
2:20pm 3:12pm Simmons 70783 747 Simmons 727

84 727 Barth 747

The selection from the relation r[R] of the tuples with 84 747 Hill 727

X = x, X C R, written r[R I X = x] or 'x=(,(r[R]), is 109 707 Hill 747

the indicator function: r[R I X = x](t) = 1 if t[X] = x;
r[R I X = x](t) = 0 otherwise. The Y-projection of the
X = x selection from r[R] is written r[Y I X = X1.
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options = usable M certified
FLT EQPMT PILOT Table 1: Basic database and probability parallels.

83 727 Simmons DATABASE PROBABILITY
83 727 Hill CONCEPT CONCEPT
83 747 Barth
83 747 Hill
84 727 Simmons Relation scheme
84 727 Hill (table skeleton) R, Random vector V,
84 747 Barth a set of attributes a set of random variables
84 747 Hill (column names)
109 707 Simmons

Relation (tablel Distribution

over R, r[R], for V, p[V],
WrFLT, PILOT(Options) an indicator function a probability function
FLT PILOT for a set of tuples (rows)

83 Simmons
83 Hill
83 Barth Projection of r[R] Marginal distribution
84 Simmons onto X C R, of X C V,
84 Hill Trx(r[R]), or r[X] p[X]
84 Barth
109 Simmons

Selection ax=,(r[R]), Conditional distribution
or r[RI X = z], p[VIX = X].

XC)R XCV
'Fable I summarizes the basic database/probability -

parallels covered to this point.
Database design concepts involve putting constraints Join of 2 relations Product of 2 functions

on the data that can populate a table. There are three ri[Ril] r2 [R2] h1 [VI] ® h2[V2]
basic kinds of constraints: a functional dependency, a
multivalued dependency, and a join dependency. These
correspond to three constraints on probablity distribu-
tions: transformation constraints, conditional indepen-
dencies, and general factorization constraints. tions over R must satisfy the dependency.

A relation r[R] satisfies the functional dependency FD: AIRLINE EXAMPLE. The functional dependency

X - Y if for each X-value x with r[X](x) = 1, there FLT - {FROM, TO, DEP, ARR} remains true over

is a unique Y-value y, such that r[Y I X = W](y) = 1 if time. As a result, FLT is a candidate key for the re-

y = y, and r[Y I X = x](y) = 0 otherwise. lation schedule.

A distribution p[V] satisfies the transformation con- A relation r[R] satisfies the multivalued dependency

straint TC: X -. Y if for each X-value x with p[X](x) > MVD: Z-N I Y if

0, there is a unique Y-value y, such that pt[) IX = rJYZ)(x1, yl, z) r[XYZ](X2 , Y2, z)
x](y) = I if y = Y, and p[Y I X = x](y) = 0 otherwise.

AIRLINE EXAMPLE. The relation schedule satisfies = r[XYZ](xl,y 2, z) r[XYZ](X2 ,y1, z).
the FD FLT -. {FROM, TO, DEP, ARR}. The FLT- Similarly, a distribution p[V] satisfies the conditional
value of a tuple uniquely determines the rest of the independency CI: X-ILY I Z if
tuple. The relation schedule does not satisfy the FD
FROM - TO because t 2[FROM) = t4JFROM] = JFK, p[XYZI(Xi, V1, z) p[XYZ](X 2, Y2, z)
but t 2 [TO] = Los Angeles $ Boston = t 4 [TO].

A random vector V satisfies a constraint if all distri- = [ Z](z, ,Y, z) p[XYZ](z 2 , YI, z).
butions for V must satisfy the constraint. Likewise, a Multivalued dependencies are equivalent to binary join
relation scheme R satisfies a data dependency if all rela- dependencies. That is, a relation satisfies an MVD iff
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it can be recovered as the join of two relations defined
on "smaller" relation schemes. In symbols, a relation servday
r[R] satisfies MVD: Z---.X I Y iff there exist relations "FLT, DAY OF WEEK (service)
ri[XZI and r2 [YZ such that r = r, H r 2: that is, FLT DAY OF WEEK

106 Monday

r[XYZ](z, y, z) = ri [XZ](z, z) r 2[YZ](y, z). 106 Thursday
204 Wednesday

If such rj's exist, then r[R] is said to satisfy the binary
join dependency BJD: N4 {XZ, YZ). Also, if such rj's servtype
exist, then they can be taken to be ri[XZI = r[XZ] and = 'FLT, PLANE TYPE(service)
r2[YZI = r[YZ]. FLT PLANE TYPE

Similarly, conditional independencies are equivalent to 106 747
binary factorization constraints. That is, a probability 106 1011
distribution satisfies a CIiff it can be recovdred as the 204 707
product of two functions defined on "smaller" random 204 727
vectors. In symbols, a distribution p[V] satisfies CI:
XILLY I Z iff there exist nonnegative functions h1[XZ]
and h2[YZ] such that p = h, ® h2 : that is,

service2
p[XYZ](z, y, z) = hi [XZ](z, z) h2 [YZ](y, z). FLT DAY OF WEEK PLANE TYPE

106 Monday 747
If such hj's exist, then p[V] is said to satisfy the binary 106 Thursday 747
factorization constraint BFC: ®{XZ, YZ}. 106 Monday 1011

AIRLINE EXAMPLE. Relation service satisfies the 204 Wednesday 707
MVD: FLT-.--DAY OF WEEK I PLANE TYPE be- 204 Wednesday 727
cause service = servday N servtype where servday =
service[FLT, DAY OF WEEK] and servtype =
service[FLT, PLANE TYPE]. Relation service2, A distribution p[V satisfies the factorization con-
which has the same two projections as service, does not straint FC: ®V, V = IV1, ... , V}, V g V, if there exist
satisfy this MVD because it lacks the tuple (106, Thurs- nonnegative functions h [V1,..., h[Vk] such that
day, 1011).

p[V] = hi[V1] ®- -® hk[Vi].

service The set of margins V is a hypergraph over V. Factoriza-
FLT DAY OF WEEK PLANE TYPE tion constraints generalize loglinear models which must
106 Monday 747 be strictly positive.
106 Thursday 747 EXAMPLE. The relation r[ABC] satisfies the JD: N
106 Monday 1011 {AB, BC, AC) but does not satisfy any nontrivial MVD.
106 Thursday 1011
204 Wednesday 707
204 Wednesday 727 r[ABC] r[AB] r[BC] r[AC]

A B C A B B C A C
11 1 1 1 1 1 1 1

A relation r[R] satisfies the join dependency JD: N IZ, 1 2 2 1 2 2 2 1 2
7Z = {R 1 ,..., Rk), R C R, if there exist relations r, [RI], 2 3 3 2 3 3 3 2 3

rk[Rk] such that 3 3 4 3 3 3 4 3 4
4 4 5 4 4 4 5 4 5

r[RI = r[Rl]N. .. Nrk[R]. 5 5 5 5 5 5 5 5 5

If such rj's exist, then they can be taken to be rj[Ri] =
r[Rj], j = 1,..., k. The set of relation schemes 1? is a set
of subsets of R; in other words, 1Z is a hypergraph over
R.
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Finally, databases correspond to sets of marginal dis- 3 A Brief Introduction to
tributions. Normalization Theory

A database scheme over attribute set R is a set of rela-
tion schemes with attributes from R: 1Z = R1, .... Rk}, Here is a very tiny bit of normalization theory, an im-
Rj C R. The database scheme 7? is a hypergraph portant standard topic in database theory with no useful
over R. A database over database scheme RZ is a set parallels in probability theory. The basic reason for nor-
of relations over the relation schemes in 1?: r(1J = ralizing a database is to automatically eliminate possi-
{rl[Rl],...,rk[Rk]}. ble inconsistencies that might otherwise arise.

A set of margins of random vector V is a set of random A set of attributes K is a candidate key of R if K - R.
vectors with variables from V: V = { Vl, ..., Vk), Vi C_ V. One of the candidate keys of relation R is designated the
The set of margins V is a hypergraph over V. A set of primary key and the other attributes are called non-keys.
marginals over set of margins V is a set of distributions A set ( f attributes Y is fully dependent on another set
for the margins in 1: p[V] = {pi[V1], ...,pk[Vk]}. of attributes X if X -- Y and there is no Z C X such

Table 2 summarizes this second collection of parallels. that Z --+ Y. If there is such a Z then Y is partially
There are many more parallels between database theory dependent on X.
and probability. Sections 4, 5, and 6 discuss, very briefly, A set of attributes Z is transitively dependent on X
three parallel problems and solutions, if there is a Y such that X -* Y and Y -- Z.

The normal forms are:

* First Normal Form (INF): A relation is in 1NF if
Table 2: Further database and probability parallels. all the values in its tuples are atomic. There are no

DATABASE PROBABILITY repeating groups.

CONCEPT CONCEPT e Second Normal Form (2NF): A relation is in 2NF if
it is in 1NF and every non-key is fully dependent on
the primary key. A relation in 2NF has no partial

Functional dependency Variable transformation dependencies.
X Y X Y * Third Normal Form (3NF): A relation is in 3NF if

X, Y C R X, Y C V it is in 2NF and no non-key is transitively depen-

dent on the primary key. A relation in 3NF has no
partial or transitive dependencies. All the non-keys

Multivalued dependency Conditional independency in a 3NF relation are mutually independent (i.e. no
Z-X I Y X.LY I Z nonkey is functionally dependent on another non-
X,Y, Z C R X,Y, Z C V key).

e Boyce/Codd Normal Form (BCNF): A relation is in
Join dependency Factorization constraint BCNF if every FD is a consequence of the candidate

C4 TZ ®V keys. Date: "Each field must represent a fact about
R- {R, ..., Rk}, Rj c R v = {W1,..., Vl I vi c V the key, the whole key, and nothing but the key."

o Fourth Normal Form (4NF): A relation is in 4NF if
MVDs are binary JDs CIs are binary FCs every MVD is a consequence of the candidate keys.

M {XZ,YZ} ®{XZ,YZ} All dependencies (MVDs and FDs) ofa 4NF relation

are FDs from a candidate key to another attribute.
A relation is in 4NF if it is in BCNF and all its

Database scheme over R Set of margins of V MVDs are FDs.R={RI,,...,R }J gCR V ={V,.....Vk},,C V 7 Fifth Normal Form (5NF): A relation is in 5NF if
every JD is a consequence of the candidate keys.

Database over 1Z Set of marginals on V 5NF is also called project/join normal form.
r[TZ] = {ri[Ri,]...,rk[R]} p[V] = {pi[V1].....pk[V]} There are rules for converting database schemes that

do not satisfy normal forms into ones that do. The in-
terested reader should consult Maier (1983) or Ullman
(1982), for example.
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4 Parallel Theorems for Consis- if its elements can be ordered so that for each i = 2, ..., k,

tent Databases and Consistent there is a j < i with

Sets of Marginal Distributions Hi n (HI u.-. U H,_1 ) C Hj.

It was noted earlier that database schemes and sets of The two results can now be stated.
margins are hypergraphs. There are strong connections Vorob'ev (1962) proved that every pairwise consistent
between relational databases and graph theory and be- set of marginals over a set of margins V is extendable
tween probability theory and graph theory. Often, prop- if and only if the hypergraph V is acyclic (see also Lau-
erties of databases and properties of probability distribu- ritzen, Speed & Vijayan, 1984).
tions are determined by the underlying graphical struc- Beeri, Fagin, Maier & Yannakakis (1983) proved the
ture. This section gives an example of the kind of parallel parallel result for relational databases: that is, every
results that arise because of these connections to graph pairwise consistent database over a database scheme 1
theory. is globally consistent if and only if the hypergraph 7Z is

A database r[Il] is pairwise consistent if r/[R, n Rj] = acyclic.
rj[RORj]. A database r[IZ] is globally consistent if there
exists a single relation r[R] such that rj[Rj] = r[Rj]; if
such an r[R] exists, then it can be taken to be r[R] = 5 Closures of Sets of MVDs and
ri[RI] N ... k[Rk].

A set of marginals p[V] is pairwise consistent ifpi[vi n Sets of CIs
Vj] = pj[ViA nV]. A set of marginals p[V] is globally con-
sistent (or extendable) if there exists a single distribution Let M be a set of MVDs over R. The closure M* of M
p[V] such that pj[Vj] = p[Vj]. is the set of MVDs implied by the MVDs in M, that is, if

Consider the following two examples. a relation satisfies the MVDs in M, then it also satisfies
EXAMPLE 1 (Vorob'ev, 1962). Let V = {AB, BC, the MVDs in M*.

AC) be a set of margins of the random vector ABC. Let The closure M* of M can be found as follows. Let
P = {P ,P2,P3} be the set of marginals over V defined EM(X) = {Y C R - X : X-Y E M*}. The de-
by pendency basis of X, DEPM(X), is the partition of

Pd[AB](0, 0) = pi[AB](1, 1) = 1/2, R- X such that Y E EM(X) iff Y is a union of sets in

p2 [BC](1,O) = P2[BC](0, 1) = 1/2, DEPM(X). DEPM(X) can be found using the 'ollow-

and 
ing algorithm:

p3[AC](0, O) = pa[AC](1, 1) = 1/2. (0) Start with partition = {V - X}.

There is no distribution p[ABC] such that p[AB] =
pi[AB], p[BC] = p2[BC], and p[AC] = p3[AC]. Such (1) If Y E P and there is an MVD: Z---W in M s,"h
a p[ABC] would have p[ABC](0,0,O) = 0 because that YOnZ = 0, then replace Y by the 2 sets YOnIV
p2[BC](O,O) = 0, and p[ABC](0,0, 1) = 0 because and Y - W.
p3[AC](0,1) = 0, so p[AB](O,0) = 0, contradicting

pI[AB] = 1/2. This same example can be given as a (2) Repeat (1) until it no longer changes P.
database example with p's replaced by r's and 1/2's re-
placed by l's. The final partition is DEPM(X).

EXAMPLE 2. Let 1Z = {ABD, BCD, BCE} be a EXAMPLE. Let M = {BC-- AD I E, BD--A I
database scheme over ABCDE. For every pairwise con- CE). To find DEPM(BCD), (0) let P = {AE}, (1)
sistent database r = {ri, r2 , r3} over lZ, there is a sin- AE E P, BC--AD I E E M, and BCnAE = 0, so
gle relation ,[ABCDE] such that r[ABD] = ri[ABD], replacing AE by AE n AD = A and AE n E = E gives
r[BCD] = r2[BCD], and r[BCE] = ra[BCE]. The par- DEPM(BCD) = {A, E).
allel statement holds for probability distributions. Geiger & Pearl (1988, 1990) and Geiger, Paz & Pearl

The difference between these examples is that the hy- (1991) proved that the same algorithm can be used to
pergraph in Example 2 is acyclic but the one in Example find the closure of a set of conditional independencies
1 is not acyclic. There are many ways to define an acyclic with respect to arbitrary (i.e. not necessarily strictly
hypergraph. The following definition, referred to as the positive) distributions. They also derived a graph-based
running intersection property, does not require defini- approach for finding the closure with respect to strictly
tions for any other concepts. A hypergraph Wt is acyclic positive distributions.
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6 Eliminating Intersection Jon Kettenring for encouraging me to give the tutorial.

Anomalies

The two CIs XLLY I Z and X..LZ I Y imply the third References
XJ.LYZ for strictly positive distributions. The same is
not true for arbitrary distributions. For example, the BEER, C., FAGIN, R., MAIER, D. & YANNAKAKIS,
distribution p[XYZ](O,O,0) = p[XYZ](1, 1, 1) = 1/2, M. (1983). On the desirability of acyclic database
p[XYZ](x, y, z) = 0 otherwise, satisfies the first two of schemes. Journal of the Association for Computing
these CIs, but does not satisfy the third. The set of CIs Machines 30,479-513.
{XILY I Z, XJL Z I Y} is said to have an intersection BEER, C. & KiFER, M. (1986a). An integrated
anomaly. approach to logical database design of relational

After reviewing several statistical arguments that database schemes. ACM Transactions on Database
were flawed because they ignored intersection anoma- Systems 11, 134-158.
lies, Dawid (1979) showed that it is possible to fix up
this anomaly by adding a variable W such that W is BEERI, C. & KIFER, M. (1986b). Elimination of in-
functionally determined by each of Y and Z individu- tersection anomalies from database schemes. Jour-
ally (i.e. Y - W, Z -. W) and XLYZ I W. The vari- nal of the Association for Computing Machinery 33,
able W represents the information that Y and Z have in 423-450.
common.

Beeri and Kifer (1986a, b, 1987) and others have writ- BEERI, C. & KIFER, M. (1987). A theory of inter-
ten extensively about the same issue for sets of MVDs. section anomalies in relational database schemes.
Their solution, which has implications for database de- Journal of the Association for Computing Machin-
sign, is the same as Dawid's. They only apply the ery 34, 544-577
method to sets of MVDs that do not have split left hand
sides, so after eliminating intersection anomalies they CODD, E. F. (1970). A relational model of data for
have a conflict-free set of MVDs which is equivalent to a large shared data banks. Communications of the
single (acyclic) JD. ACM 13, 377-387.

DARROCH, J. N., LAURITZEN, S. L. & SPEED, T.
7 Concluding Remarks P. (1980). Markov fileds and loglinear models for

contingency tables. Annals of Statistics 8, 522-539.
This tutorial reviewed basic parallels between database

theory and probability theory. It discussed three par- DATE, C. J. (1986). An Introduction to Database Sys-
allel problems and corresponding solutions in the two tems, Volume I, Fourth Edition. Addison-Wesley,
areas. It mentioned some of the connections to graph Reading, Massachusetts.
theory which provide another bridge between results in
database theory and those in probability theory. For ex- DAWID, A. P. (1979). Some misleading arguments in-
ample, acyclic databases and decomposable models (dis- volving conditional independence. Journal of the
tributions that satisfy acyclic factorization constraints) Royal Statistical Society, Series B 41, 249-252.
have many desirable properties (Beeri, Fagin, Maier &
Yannakakis, 1983; Darroch, Lauritzen & Speed, 1980). FAGIN, R. (1977). Multivalued dependencies and a new

One particularly interesting connection concerns the normal form for relational databases. ACM Trans-
positivity condition of the Gibbs-Markov equivalence actions on Database Systems 2, 262-278.
theorem. It is possible to relax the positivity condition
using concepts from relational database theory. Results FAGIN, R., MENDELZON, A. 0. & ULLMAN, J. F.
on this topic and others will be given in future papers. (1982). A simplified universal relation assumption

and its properties. ACM Transactions on Database
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Abstract KEY WORDS: Hydraulic conductivity; Mixture

A new form of regression is applied to the problem of decomposition; Nonparametric estimation;
modeling the flow of water and contaminants through Nonparametric regression; Switching regression;
soil. In a fashion analogous to nested ANOVA, the Vadose zone infiltration.
new method parametrizes global distributional
structure separately from local structure. A blind
study is conducted to assess the precision of mixing 1. Introduction
parameter estimation as a function of depth. It is
shown that accurate estimates of the regression This paper concerns the description of soil
relationship can be obtained from a sample of size characteristics by means of a new type of regression.
n=1000 for mixing parameters and all other The value of this form of regression stems from its
component parameters, with the exception of the capacity to separate global from local variability
standard deviation of small components which have through the use of interactive graphical analysis.
large variances. As discussed by Wagenet (1986, p. 340):
It is shown that the hydraulic conductivity, transport,
or infiltration of water borne contaminants through It appears that a stochastic, rather than a
the vadose zone can be effectively modeled and deterministic, model approach should be
simulated by the mixing parameter regression considered when modeling water andmethods. chemical movement in the unsaturated zone.

mehs This will represent no small change in our
conceptualization of basic principles of

Research Supported by National Institute of pesticide modeling. The resulting models will
Environmental Health Sciences Grant 1 ROI ES almost certainly not represent basic processes
053479-01. The authors would like to thank C. Mellin in fundamental mechanistic terms, but will
for many useful comments and for guiding the many instead will represent the soil-water-pesticide
stages of this project to completion. system in statistical terms.
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In line with Wagenet's assertion we propose to Ramsey (1978) refer to this model as "switching
simultaneously describe global and local variability regression". The distinction between switching
by means of mixing parameter regression. regression and mixing parameter regression is central

Soil can be considered to be both a mixture in the to the theme of this paper. A switching regression
curve describes the overall distribution, and hence

chemical and in the statistical sense. However, one form of variation of the distribution in its entirety.
unlike the uniformity inherent in the molecules of On the other hand, the mixing parameter regression
compounds the substances such as clays, sands, function P(x) describes pure global variation. In the

pebbles and cobbles which are described below do faseton si cies pue gl obal It

not aveuniormchaacteistcs. Rater han case of soil constituents such as sand or cobbles itnot have uniform characteristics. Rather than quantifies the variation of a constituent in its entirety,

uniformity, there is a degree of variability n aindependent of variation within the constituent itself.

hydraulic conductivity, density and pore size, as well For example, it can be used to indicate how flow is

as in many other characteristics of any given affected by the change from the proporton of cobbles

substance, which is comparable to the obvious found at onedepth X=x, to the proportion found at

variability between substances.
a second depth X=x 2. If the parameters of the cobble-

water-borne contaminant flows are modeled, it is of specific density also change with depth, this change
gratr-aorue tontamizthfwsae betwee-stae i will affect the overall model through parameters othergreat value to parametrize the between-substance

variability separately from the within substance than P(x), specifically, gj(x), a1(x). (Below we will

variability. In the two-substance case, consider use cobbles in examples of the new mixture

mixture model (1) of the conditional probability methodology to emphasize that the material whose

density f(y I x) of flow variate value Y=y at a given properties are being studied cannot always be

value x of key variate X: brought to the surface and examined directly, but
instead, must often be examined in situ.)

P(x) f([y-(x)1/°1(x)1/° 1 (x) + For purposes of illustration, suppose f, describes local

(-P(x) 1f2 f1Y-P(x)1/ 2(x)) /a2(x) (1) variation within deposits of cobbles and, and f2

where f, and f2 are probability densities which are describes local variation within deposits of sand.

symmetric about zero, regression functions gj±(x), aU1(x), (Below, we will refer to the former as high density
describe the local substance-specific and the later as low density pockets.) It is extremely

x2(x) and a2(x) dsconvenient to separate the estimation of the function
variation with value x of variate X (below we will P(x) from the estimation of the parameters which
specifically refer to x as a depth) and finally, and most form part of f,'s and f2 's arguments. The stochastic
importantly, mixing parameter regression function P(x) models used to simulate flow processes can be
expresses the relationship between pure global systematically constructed when these three functions
variation of the Y variate and the value of the key are considered separately. In addition, in a fashion
variable X. Local variation within contiguous and analogous to nested analysis of variance (Fraser,
homogeneous soil subregions, pockets, is described 1958, pp.141-150), ANOVA, this formulation can
by the functions f, and f2 , where these functions will facilitate studies of the relative importance of local (in
be assumed to be functionally independent of x. In nested ANOVA, within) versus global (in nested
realistic applications, there will of course be both ANOVA, between) variation of soil characteristics for
more than two classifications of soil types and X will the prediction of water and contaminant flow through
be vector rather scalar-valued. However, both for soil (Ray and Turk 1991).
purposes of illustration, and because the methodology
illustrated below is at the cutting edge of what is now
computationally feasible, only the two component 2. Soil Configurations
scalar case will be discussed.

Three basic types of soil configuration are shown in
Previous statistical literature which discusses mixture Figures la, b and c. Figure la depicts a distribution
model regression focuses upon the relationship where small pockets of high density soil are uniformly
between the two means , iit(x) and J ~(x) , and x. distributed. (In terms of mixture model (1), the
Quandt (1958,1972), Kieffer (1978), and Quandt and proportion of high density soil at depth x is
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parametrized by P(x).) Because of this uniformity, the
soil configuration shown in Figure la can be analyzed
by switching regression methods.

Figure lb shows a mixture which is similar to that High Density

shown in Figure la, where large pockets of high
density soil are uniformly distributed. Figure 1c
shows a configuration where the proportion of high
density soil increases with depth variate x. Note that
within each pocket, in other words, locally, hydraulic ..... ,.......
conductivity, infiltration, or movement might
reasonably be assumed to have the same distribution.
However, globally, the pocket-type (in other words
the type of mixture subpopulation) might vary as a
function of depth x. (Of course, it is also possible that
other parameters besides P(x) are non-constant
functions of x.)

Even though depth, as depicted in Figures labc, is
usually treated as a vertical coordinate, below, the
letter x will be used to represent a specific depth.
This choice of representation was required by the
convention that x represent the independent variate
within a regression relationship. Consequently, in Figure lb Mixture of two soil types: large pockets of
the scatter diagram and estimated density displays in high density soil.
this paper, the depth variate will vary horizontally,
along the x-axis.

High Density High Density

Low Density -o Density

Figure la. Mixture of two soil types: small pockets of Figure lc. Mixture of two soil types: high density soil
high density soil. increases with depth.
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3. Theory which can reduce the overlap of mixture components.As modified by Tarter (1979a) Section 4 and described

The methodological approach used to estimate the by Titterington, Smith and Makov (1985) pp. 138-140,
function P(x) is based on the distinction between this procedure will below be called the X method. The
mixing parameter and other forms of regression. For following example describes these steps:
example, in the bivariate case what Quandt
(1958,1972) refers to as switching parameter Figure 2 is a scatter diagram constructed from 1000
regression involves the decomposition of a mixture of data points simulated as part of the study described
two bivariate normal densities, where the constant in the next section. The dark vertical line shown in
value P(x)=p, specified how much one density this figure is the intersection of the plane through the
contributes to the overall mixture. (For example, in frequency axis, upon which Figures 3-5 are drawn,
Section 4.3 of Quandt and Ramsey, 1978, the mixing and the plane within which scatter diagram points
parameter, which these authors call "" is not are depicted.
considered to be functionally related to the of the
random variate, which these authors represent by "E.")
The decomposition of bivariate normals is discussed . .

by Tarter and Silvers (1975) and Titterington, Smith
and Makov (1985) pp. 142-145. The two variate . ° "
special case for which P(x)=p, and therefore P(x) is a • °
horizontal line, is the only situation where mixing ::- - . "
parameter regression is equivalent to the - . -
decomposition of bivariate normal densities. . *1 ..

In the two dimensional normal special case, mixing o

parameter regression is parametrized in terms of the " . .. .
conditional normal density and not in terms of the. . ° " -. ,
bivariate normal. Because it is a shorter and less . .. :.rI .. . .
technical term, below we will refer to estimated .
conditional densities as "slices." At a given point x, z. "... .
P(x) determines the proportion of a slice attributable
to one component of a given two-component mixture.
For example, in certain applications where x is a 0 00 700

depth measurement, P(x) measures the proportion of
one of the following list of soil components that is
present within a specific soil layer: Clayey soils, Figure 2. Scatter diagram of a 1000 point sample from
sandy textured soils, soils with large pores (cobbles, the simulation experiment described in Section 3.
large rocks, void root channels, worm holes etc..)
Helling and Gish (1986). While the standard bivariate The first step in the process of mixing parameter
normal mixture model considered by Tarter and regression is the estimation of the joint density of the
Silvers (1975) describes a situation where the means of regen ist e e n den s f th edependent and independent variate. Methodology
the individual subpopulations of soil components described in Tarter and Lock (1991) was used for this
change with depth, it does not describe a situation purpose. After the bivariate density is constructed,wpurpose.eAfterotheobivafateidensiponistconstructed
where the proportions of soil components vary with equations (2.22) and (2.23) of Tarter (1979b) were used
depth. to estimate the conditionals at a sequence of

Because the conditional estimation or slicing process independent variate values. The slice taken at point
is central to mixing parameter regression, the crucial x=600 inches through the line shown in Figure 2 is
step of P(x) determination is the estimation of density shown in Figure 3.
slices. Once a slice is estimated at a depth x, this slice
is then separated into its constituent components. This The spurious bumps shown at the right side of Figure
is accomplished by using the univariate procedures 3 are due to the use of a curve estimation procedure
described by Kronmal (1964), by means of which a based on fixed kernel methodology. As discussed by
density can be estimated using a kernel transform Tarter and Lock (1991) Section 3, methods of Breiman,
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.2 .7 1.2 .2 .7 1.2 1.'7
FLOW FLOW

Figure 3. Estimated conditional density of the y Figure 4. Estimated conditional density shown in
variate in Figure 2 given the value x=600, i.e. along Figure 3 with standard deviations of subcomponents
the solid line shown in Figure 2. reduced.

Meisel and Purcell (1977) and Tarter Silvers (1975) variance, gj(x) and a1(x), can be estimated. The
Expression (2.13) can be used as the basis of variable I I
kernel techniques. However, because the dashed curve in Figure 5 was fit to the m lxture

transformation procedures (which we presently use to component using the .t(x) and 71 W values

accomplish the same goals towards which variable estimated from the data shown in Figure 2. For the
kernel approaches are directed) would have sample being illustrated, the only parameter which
complicated this paper, we used basic fixed kernel could not be accurately estimated is the standard
procedures to conduct the study described below, deviation of the smaller density component, o2(x).

Figure 4 depicts the application of the Kronmal (1964)
and Titterington, Smith and Makov (1985) procedure 4. Blind study
to the curve shown in Figure 3. This involved the
sample-size-controlled modification of the Fourier The graphical selection of the point at which
transform of the estimated density to obtain a curve components are sufficiently drawn apart for the
estimate where the standard deviations of all mixture separation step to be instituted is interactive.
components are all reduced by a user selected Consequently, the authors designed a simple single
constant X. blind trial to assess the performance of the mixing

parameter regression estimation procedure. One
Once the mixture-component-specific variances are author devised and implemented simulation
reduced sufficiently so that the resulting curve has no procedures and, independently, a second author
component overlap, one or another of the components performed the steps of the interactive parameter
can be excised and mixing parameter P(x) can be estimation process without any knowledge of the
estimated for the slice at X=x. Finally, the post- parameters selected for the simulated samples.
excision curve can have its component standard Twenty different samples, where each sample
deviation increased by -A (which brings it back to the corresponded to a reasonable choice of the curve P(x)
neutral setting). The effect of this step is shown by as well as comparable regression functions associated
the solid curve in Figure 5. Once a component of the with other parameters, were generated. (As a point of
slice at x is isolated, the component-specific mean and reference, it is the special case where P(x) is a
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Model 70 386 with a sample of one thousand points.
The consistent performance of the estimation method
in determining model parameters demonstrated the
feasibility of using the mixing parameter regression
model with the PC-based computational hardware
which is available today. The following is a
representative selection of trials, which correspond
respectively to the three soil pocket configurations
described in Section 2.

5. Discussion and Trials

Cressie (1988) described local and global components
of environmental variation using the stochastic model
Y(x) = p(x) + W(x) + (x), where p(.) is the
deterministic mean structure by which large scale

2 1.2 1.7 variation is modeled, W(.) is a zero mean intrinsically
FLOW stationary process used to represent small scale

variation and E(.) is a zero mean white noise process
Figure 5. Leftmost component isolated from the independent of W used to represent measurement
conditional density shown in Figure 3. The dashed error.
line is a normal curve fit to the component. Universal kriging and intrinsic random function of order k

methods have been used to separate large scale from
horizontal line and where the component mean local environmental variation. Cressie (1986)
functions gl(x) and g2(x) are linear, that corresponds compared these methods and proposed the median
to switching regression.) polish method for the estimation of large scale

variation or drift. These methods are based on the
Two forms of simulation modeling were used in the removal of large scale variation in order to locally
blind study. In the first set of simulations, the mixing predict the value of Y at a point (or small region) of
parameter regression model was used directly. Here, contiguous x values. The estimated variogram, an
models in which the mixing parameter P(x) varied as estimate of the functional E[Yt+h(x) - Yt(x)]2 / 2 , is
a linear function of x were used to simulate soils in
which the proportion of high density soil increased the resulting descriptive estimator of local variability.
directly with soil depth (as illustrated by Figure Ic). While the variogram targets local variability, the
Models in which P(x) had many modes or bumps estimates obtained using mixing parameter regression
(technically, where the derivative P'(x) had many yield separate local and global variability statistics.
roots) were used to simulate soils of the sort that had Because of the above distinction it is of interest to
a uniform dispersion of small pockets or lenses of study the behavior of the variogram estimator
high density soil. A second set of simulation obtained from the examples shown in Figures la and
experiments in which soil configurations were lb (which illustrate the situation where there is no
modeled stochastically by randomly assigning the systematic mean value drift) and the Figure Ic
location and size of high density soil pockets was also example.
conducted.

Because switching regression and most mixture Figure 6 displays the robust variogram estimates

decomposition methods are applicable to normal (Cressie and Hawkins, 1980) for the three examples

data, normal random deviates were used to describe shown in Figures la, lb and 1c. The mixing

variation about parameter values. The interactive parameter regression estimators for these three

process of estimating all five regression curves P(x), examples are shown in Figure 7. It is notable that the
three examples are easily distinguished from one

p1(x), 01(x), B.t2(x) and a2(x) takes approximately another by the mixing parameter method but, to all
twenty minutes using an IBM Personal System/2 extents and purposes, yield indistinguishable
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Figure 6. Variogram estimates of data simulated to Figure 8. Comparison of estimated and true
have the characteristics described in Figures la, b and regression relationship between the mixing parameter
C. and depth.

0 io A Large pockets oft mixing parameter regression process tends to be the
high density soil result of the following two closely related causes: (1)

060 0 Small pockets of the process which first separates distributional
high density soil components and then, in effect, snaps them back into

0 nc- soi density dphtheir non-variance-reduced form does not eliminate
- all overlap effects. (2) The curve estimation

methodology upon which the component reduction
0.30 and isolation methodology is based is in no way

tuned to perform well for mixture parameter
020- regression applications. In particular, as discussed by

010- Tarter and Lock (1991), with very few exceptions,
there is a tendency for both kernel and series

05 0. approaches to inflate the variance of estimated
200 250 300 5so 400 450 00 00 00 65 dO 7ns 7ie

Depth densities.

Use of an everywhere non-negative fixed bandwidth
Figure 7. Regression of the mixing parameter versus kernel must inflate this variance by a constant
depth for the three types of data described in Figures approximately equal to the variance of the kernel.
la, b and c. (Expression 10 of Tarter and Raman (1971) indicates

that such an estimate is the convolution of the kernel

variogram estimators. and a density whose variance is identical to n/(n-l)
times the sample variance.) Hence, we are presently

An example of an actual mixing parameter regression experimenting with the equivalent of variable
curve is shown in Figure 8 as is the population curve (Brieman, L., Meisel, W. and Purcell, E., 1977) and
which mixing parameter regression estimates. These somewhere-negative kernel methods which will yield
curves correspond to the soil configuration depicted mixing parameter regression estimators which have
in Figure Ic. Although the shape (linear) and the slope reduced bias properties. It is hoped that when
can be estimated with great precision from a sample appropriate methods are found it will be possible to
of n=1000 points Figure 8 also shows a bias which is obtain accurate mixing parameter regression curves
characteristic of the computational and statistical with sample sizes considerably smaller than the
approaches which are currently available. Bias in the n=1000 sized samples used in the above experiments.
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cases during each testing stage, then to debug the
software according to the testing result and make a1. INTRODUCTION decision whether to stop testing or not. Here we do
not restrict to the case N = I as in the usual

Software testing, or debugging, is one of the most sequential analysis, because for large programs, the
important components in software development. It testing and debugging may not be done
has been estimated that in many projects, the time simultaneously. Debugging is performed only when a
accounted for debugging can be around 50% of the large number of programs has been tested. Optimal
total development effort. There is an obvious stopping rules in software testing has been notices in
question in the debugging process, that is when to some recent literature. For example, Ross[14]
stop. One naive answer is, of course, the process considered a stopping rule based on an estimate of
continues until there are no bugs (errors) in the the future failure rate. It differs from ours in cost
program. However, this is a very difficult goal to criterion. We feel that to know when to stop, one
achieve. For most commercial software, the release must know the relative costs between testing and
requirement is usually not 100% error free, but an penalty due to future failure. Dalal and Mallows ([6],
acceptable error rate. Again, to determine when a [7]) considered loss function that can be equated to
debugging process has reached this stage is difficult. costs, but their rules depend on some prior
The best bet is often an estimate of the future error assumption of the A's. Rasmussen and Starr[13],
rate. However, the accuracy of the estimate may not Nayak[12], and Goudie[9] has also considered loss
be very high, depending on the estimation formula, function, but their loss is basically a function of the
and more seriously, on the assumptions that the remaining number of bugs instead of the future
formula is based upon.4et there be m faults in the failure rate. It seems that the main concern of the
software and their failure rates be software reliability is on the future failure rate rather

\1 ! '\2 .. - _Am >0. (1.1) than the number of bugs. Of course, the two are
Then there are assumptions on equal failure rate for equivalent if equal failure rates are assumed for each
all the faults(eg. [2, 13, 14]), and unequal failure bug. We feel that this assumption is probably not
rates (eg. (3, 8]). Or a model based on failure time realistic.
during testing instead failure rates of faults. Among
them are the basic execution time and logarithmic
Poisson execution time models(see Musa et al [ 10, 2. Theory
11]). However, these models are usually very difficult
to verify. In this section, only the most reasonable cases are
In this paper, we try to find the optimal stopping presented. Possible generalizations to more
rules based on testing cost and fault penalty after complicated situations are given in §4. The
the software is release under very little on the model assumption on A is (1.1) with m and all the A values
assumption. The debugging procedure is to test, N unknown.
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Let c denote the cost of testing one case, c9 be the
cost (penalty) when an error is encountered in the liminfJ g+(n)dP = 0,
released software, and M be the expected cases to be n

run by the consumers.

To develop theory, let I(x) be the indicator function then ( 2.2) is true for all r satisfying

{ 1 if x is true liminf g-(n)dP = 0,
0 if x is false,

where 0 is
Xi(n) = number of times that the ith bug is

encountered at the end of the nth test period, the first n > 1 such that g(n) >
E(g(n+l) I 'Jn).

and the remaining failure rate
m It can be shown that the optimal stopping rule 0 is

U(n)= E AiI(Xi(n)=O). to stop at
i1l m

Then if the program is released after the nth testing the first n > 1 such that Z Ai[1 - (1 - Ai)N]
period, the cost is i=l

•I(Xi(n)=O) < N/c. (2.3)

C(n) = c2 M . U(n) + clnN. (2.1)

For small A's, a good approximation for (2.3)
Our purpose is to find the optimal stopping rule ¢ becomes
such that

the first n > 1 such that
EC(V) _< EC(r), m 2

L A2 il(Xi(n)=0) -  1/c. (2.4)
for any stopping rule r. Here E derotes the i=1
expectation. Note that a stopping rule is a decision
that depends only on the sampling information from Since the A's are unknown, the tk defined in (2.3)
the past, not the future. To put it in the usual cannot be put into practice, but it tells us that if
notation, a stopping rule r is a random variable such there is a good estimate of the left side of the
that the event ( r=n ) c cin, where 'in is the sigma inequality in (2.3) or (2.4), we may be close to the
field generated by all the previous samples up to n. optimal stopping rule. Moreover, if any stopping rule
To find the optimal stopping rule, we first assume that can almost reach the optimal value EC(!)
that all the A's are known and use Theorem 3.3 in obtained from ip when the A's are known, it must be
Chow, Robbins, and Siegmund[5]. In order to follow nearly optimal. From the simulation study to be
the theorem more easily, we let the payoff function presented in the next section, many nearly optimal
g(n)=-C(n) and the equivalent optimal stopping rule situations are identified.
now is to find 0 such that m

Let 0 = E EZA 2 I(Xi(n)=0). Then it can be
Eg(4') > Eg(r), (2.2) shown that i=1

for any stopping rule r. Without loss of generality, m
we may let cl=1 and c2 M=c, Hence, 0 = yA 2 i(-Ai)nN

i=l

g(n) = - cU(n) - nN.
It is known in the literature (eg. [2], [4], [15])

Using our notation, we restate Theorem 3.3 of [5]. If that
the set m

E ZI(Xi(n)=2)
An= { E(g(n+l) 1F, ) < g(n) } i=

is monotonically increasing with respect to n and 2nN(nNl) MA2 )nN -
i=1



104 M.C.K. Yang and A. Chao

m
By ignoring the small difference between (1- TA - Ai, with m=100. Four configurations for A
Ai)nN - 2 and (-Ai)nN, we can estimate 0 by i 1

m are used;

nN(nN-y) EI(Xi(n)=2) = 2N(nN-1)Bn,
i=1 a) rapidly decreasing A (exponential rate): Ai=K/2i,

where Bn is the number of doubletons, i.e., the i=1,2,...,m;
number of bugs that have been encountered exactly b) moderately decreasing A (Zipf's Law): Ai=K/i,
twice up to stage n. Thus, a reasonable adaptive rule i=1,2,...,m;
(b for the recapture debugging procedure is to stop at c) slowly decreasing A (constant): Ai=K, for all i=l,

2~ .. ,m;

the first n such that - B < 1/c. d) random A (following [14]): A= K U, Ui is a
nN(nN) n- random number, i=1,...,m,

(2.5)
where K is the normalization constant so that

The expected cost of this rule is denoted by EC(V). m
When the standard debugging procedure is usrd, the A Ai=TA.
number of doubletons up to stage n has to be i=1
estimated, because all the previous bugs before stage Since TA\ is small, small N will make the test very
n have been removed. Let sn -nd bn denote the ineffective. We choose N=100, 300, 500. Since
number of singletons and doubletons discovered at N=100 is sometimes too small for the case TA=0.01,
test period n. They are observable, we hold our decision if there is no doubletons before
Let Sn denotes the number of singletons encountered the 5th period. Similarly, we hold our decision for
up to stage n, Sn and Bn can be estimate recursively N=300 and 500 if there no doubletons in the first
by period. The value c=c 2 M/c 1 can vary considerably

due to different real situation. We feel that cl=l,
n = Bn-1(1 2 N(n-_))N + c= 100, and M=10 4 is a reasonable middle ground.Thus, three values, c=10 5 , 106, and 107 are used.

Sn -1  N(1) "r-l/(n-1) + bn (2.6a) One hundred simulations were done for eachcombination of c, N, and TA.

n =  - 1N(n1) N + Sn" (2.6b) The following results have been observed.

The two formulae are derived from the maximum 1) The first thing that surprises us is that there
likelihood principle. Thus, for the standard is little difference between (2.5) and (2.7). After
debugging procedure, the stopping rule is to stop detailed check into the stopping process, we found
at that this was due to large variation in Bn, the

number of doubletons. Singletons are more stable in
teit 2 1 < 1/c. (2.7) the sample. Thus, the estimated Bn from singletons

can be as effective as the doubletons.
Again, we denote the cost under this rule by EC(i). 2) It is actually unfair to compare (2.5) and
Analytic study on the performance of (2.5) and (2.7) (2.7) with (2.3), because in (2.3) all the A's have to
seems to be very difficult. Simulations are used to be known. There is a tremendous prior information
evaluate their performances. difference between (2.3) and the two adaptive

stopping rules. However, the simulations show that
3. SIMULATION STUDY in most situations, especially for cases b, c, and d,

the adaptive methods perform extremely well. It is
The stopping rules; optimal (2.3), unlikely that in these situations any other stopping

approximation (2.4), adapted to recapture debugging rule can beat them without any prior information on
procedure (2.5). and adapted to the standard A. At least we can say that they are nearly optimal.
debugging proce( ure (2.7) are compared. In standard 3) From the expected cost point of view, the
software development, the failure rate should not be initial total failure rate TA has less influence than
very high at the testing stage. Three values, 0.10, the sizes of A.
0.05, and 0.01 are assigned for the total failure rate 4) Case a shows the biggest discrepancy in
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costs between (2.5), (2.7), and (2.3). The reason is [2] P. K. Banerjee and B. K. Sinha, "Optimal and
easy to see. If we have E A i2 < 1/c in the beginning, adaptive strategies in discovering new species,"
then no testing is the best strategy when the A's are Sequential Analysis, Vol. 4, pp. 111-122, 1985.
known. But under the real situation that the A's are [3] D. B. Brown, S. Maghsoodloo, and W. 11.
unknown, it will take a considerable number of Deason, "A cost model for determining the
testing samples to discover this fact. Thus, the optimal number of software testing cases,"
adaptive methods cost considerably more than the IEEE Trans. Software Eng., Vol. Se-15, no. 2,
optimal rule (2.3). Another situation, such as the pp. 218-221, Feb. 1989.
rapidly decreasing A case, is that although E3 Ai2 < [4] A. Chao, "On estimating the discovering of a
1/c is not true for all the A's in the beginning, the new species," Annals of Statistics, Vol. 9, pp.
A's are dominated by a few large ones and once they 1339-1342, 1981, Correction, 10, p. 1331, 1982.
are removed, E Ai2 < 1/c is satisfied by the rest of [5] Y. S. Chow, H. Robbins, and D. Siegmund,
the A's. Since the large A's can be discovered pretty Great Expectation: The theory of optimal
easily, they can be removed in the very beginning, stopping, Houghton Miffon Co., 1971.
The debugging process can then be stopped because [6] S. R. Dalal and C. L. Mallows, " When should
the A's are known. The adaptive methods again have one stop testing software, " J. Am. Stat. Assoc.,
to identify this fact at considerable cost. Vol. 83, 872-879,1988.

5) The final costs vary little due to the test size [7] S. R. Dalal and C. L. Mallows, "Some
N. graphical aids for deciding when to stop testing

software," IEEE J. on Selected Area in
4. CONCLUDING REMARKS Commun., 8, 169-175, 1990.

[8] E. H. Forman and N. D. Singpurwalla, "An
1) When the A's are equal, (2.3) is equivalent to empirical stopping rule for debugging and
(2.1) in Rasmussen and Starr[13]. We also repeated testing computer software," J. Am. Stat.
the simulation for the cases they considered. Our Assoc., Vol. 72, pp. 750-757, Dec. 1977.
results confirm their results. [9] I. B. J. Goudie, "A likelihood-based stopping
2) In the present study, the testing size N is assumed rule for recapture debugging," Biometrika, Vol.
to be the same in all the testing stages. An 77, 1, pp. 203-206, 1990.
interesting question would be what happens if we [10] J. D. Musa, A. lannino, and K. Okumoto,
vary N. One thing we noticed is that the proof of the Software Reliability, Measurement, Prediction,
optimality of (2.3) is no longer valid. It seems to be Application, McGraw-Hill, New York 1987.
a significant contribution if the tester can choose the [11] J. D. Musa, A. lannino, and K. Okumoto,
optimal sample size at each stage. Software Reliability, Professional Edition,
3) From the derivation of (2.3), we can extend the McGraw-Hill, New York 1990.
result to a more general cost function i.e., let the [12] T. K. Nayak, "Estimating population size by
cost for doing x tests be f(x). Then if Af(x) = f(x+l) recapture sampling," Biometrika, Vol. 75, no.
- f(x) is a nondecreasing function, then Theorem 1, pp. 113-20, 1988.
3.3 of [5] holds and the optimal stopping rule [13] S. L. Rasmussen and N. Starr, "Optimal and
becomes to stop at adaptive stopping in the searching for new

m species," J. Am. Stat. Assoc., Vol. 74, pp. 661-
the first n > 1 such that ZA[1-(1-Ai)N] 667, Sept. 1979.

[14] S. M. Ross, "Software reliability: The stopping
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Statistical Models in Software Reliability
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Abstract: In software reliability theory many that is, they are generated in such a way that they
different models have been proposed and investi- are representative for the operational profile. For
gated Most of these models assume perfect repair each input the program either produces the
and constant software size. Both restrictions over- correct output or a software failure is detected;
simplify reality in a huge way. In the model we will the software produces a wrong answer or no
discuss in this paper, we have tried to overcome both answer at all. After the detection of a failure the
simplifications in such a way that statistical infer- CPU-clock is stopped and the software is sent to
ence is stillpossible. a team of debuggers. The failure time and possi-

bly other failure data are observed. After the bug
is found and fixed, the CPU-clock is restarted

1. Introduction again and testing continues with a new input until
The reliability of hard- and software is time T is reached.

sometimes of vital importance to their users. Dur- Efforts in describing the evolution of the
ing the recent Gulf war a patriot missile, which reliability of computer software during test and
was stationed in Turkey, was fired by accident, development resulted in the proposal of dozens
because of a bug in the software. Obviously also of new models over the past twenty years. An
in case of less delicate computer applications cus- important class of such models is the so-called
tomers want a high degree of reliability to be class of Error-Counting and Debugging (EC&D)
guaranteed. The modelling of the evolution of the models. This class consists of models that are
reliability of a piece of software undergoing based on the test experiment described above
debugging will be the subject of this paper. (with only the failure times as test data) and some

In the next section we will give some back- strong assumptions:
grounds and classical assumptions of software (Al) Perfect repair: no new faults are introduced
reliability theory. In the third section we describe during a repair with probability 1.
the PGIR modcl, a new model with interesting (A2) Fixed software size: there is no addition of
features, and we will suggest how to estimate the new software during testing.
model parameters. In section 4 we will shed some
light upon the huge amount of extensions, that (A3) Independence of faults: faults (and hence
are possible, starting from this model; we will
define a class of regression models. Finally, in Although all three assumptions seem to be rather
the fifth and last section we give some concluding unrealistic, they form a framework on which
remarks. This short paper just tries to give some many models are built. The most elementary and
ideas and results. More details, derivations and oldest software reliability model is the model of
proofs can be found in Van Pul (1991). Jelinski-Moranda (1972), introduced almost

twenty years ago. In this model the failure rate of
2. Backgrounds and classical assumptions the program is assumed to be at any time propor-

Let us consider the following test experi- tional to the number of remaining faults and the
ment. A very large computer program is executed repair of each fault does make the same contribu-
during a fixed exposure period, say [0,Tr. Inputs tion to the decrease in failure rate. Denoting n (1)
are selected "at random" from the input space, for the observed counting process, we find for thefailure intensity function A(t) the following

This research was carried out under a grant of the Netherlands Technology Foundation (STW).
** CW! is the nationally funded institute for research on mathematics and computer science, formerly called Cen-
tre for Mathematics and Computer Science.
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expression: addition of new software. It seems reasonable that
A(t) - 0 N -- n(I) t E[10,TI, (1) Ni is in some sense proportional to the "size" of

I the total change in the software at time Ti. We

with model parameters N, the number of faults therefore assume that N i is a stochastic variable,
initially present in the software, and 4), the Poisson distributed with mean jtK,i=0,1 ...,
occurrence rate per fault, which can also be inter- where U. a parameter. We consider the testing
preted as the test efficiency. Musa (1975), Little- process during [0,-], observing say n(') faults. Let
wood (1980) and many others have built more ,T)
sophisticated models, for technical reasons, how- n(t) := I (T,<t), t E[0, T], (2)
ever, generally restricted by assumptions (Al)- =1

(A3). the number of failures detected (faults deleted)

As there exist no perfect testers and pro- during [0,1] and let

grammers, there will always be a positive chance (T)NQt) :: 2 Ni(Ti<t), I E [0, T), (3)
of introducing new faults, while repairing an old i=0
one. Secondly, development and testing of the number of faults introduced during [0,t],
software usually takes place simultaneously in where
practice. Because the addition of software, that
has never been tested before, certainly will have Ni =d PO(lKi). (4)
an effect on the reliability, it seems reasonable to We assume that the failure intensity X, like in the
take also software growth during testing into Jelinski-Moranda model, at any time is propor-
account. Furthermore certain bugs will prevent tional to the remaining number of faults, that is:
parts of the software to be inspected and there-
fore will hide other bugs, thus violating the N(t) : P 4 N(t -)-n(t-)I,  t E10,r], (5)
assumption of independence of faults. Dropping where 0 denotes the constant occurrence rate per
(A3), however, would cause the mathematical fault. With use of the data (Ti, K), i =0, 1,....n (),
problem to become highly complicated and obtained from the experiment as described above,
almost untractable. one can estimate the parameters (,o,) of the

In the next section we introduce a new underlying PGIR model. We will use the max-
model, the Poisson Growth and Imperfect Repair imum likelihood estimation (MLE) procedure for
(PGIR) model. We combined the modelling of this purpose. The following lemma will be very
imperfect repair and software growth in a natural useful:
way. Furthermore to a certain extent the model
will account for dependencies between faults. Lemma 1:
The model has attractive statistical properties, For all m E N and all (ao,a 1 , - - - a,) E R" we
besides. have:

3. The PGIR model. aO a 0 aI,
Let T>O. We consider a test experiment as I N0  2 (N0o+N .) ...

described in the introduction. Let To:O and VoN,= No! N,=) NI!

Ti,i = 1,2,... the failure times of the occurring .. a.mN .

failures. Repair takes place immediately after a 2=(N 0 + NN + "! + N, - m)
failure is detected. For reasons of convenience the
addition of new software takes only place at the a0 (ao+aI) ...
failure times T,. Due to the correction of a fault . . (a + + a,,)e' a, ' a. (6)
and eventually due to the addition of new
software at time Ti, there is a change in the Proof:
software of size Ki, i 0 1 The Ki are hence the The result follows immediately with natural induc-
known outcomes of some deterministic software tion.
measure, e.g. lines of code, complexity, number of
loops or subroutine-calls . At time T apart from We now return to the derivation of the
deleting one fault, N new faults are introduced, likelihood function for the PGIR model, as
partly due to bad repair and partly due to the described by (2)-(5). Aalen (1978) showed, that
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the likelihood function for estimating the parame- j e O- [ X
ters of the intensity function of a counting pro- io [ j=o
cess, observed on a fixed time interval [0,] is ()
given by: ) exp 2 (T-Ti)-I Ki(1-e- #-r )  (12)
l() L,(Cu,4;To, T1, T. ,T(=)) i=I

II X(Ti -)exp(- f(s)ds). (7) We now take the logarithm of the likelihood func-
i= x 0 tion (12), set the partial derivatives equal to zero

As the N are independent Poisson distributed and solve the system of two ML-equations,

stochastic variables with mean IKi we have finding expressions for the ML estimators /^:

P() := P [Ni= Ni,i= "...n(T)] n( n (T) (13)2 Ki I1-e- ( - ,]

n (T) N , -c )

H fl e -1 (8)
i=0[ I (N()! and 4 is the solution ofg(o)=0 with

and defining:

ai : p Kie - T ), (9) g(?) .- n(7)i(T-Ti) +

bi  := (No + .. . Ni I=i), (10) () T
2 K,(T- T-)e

for i =1...,n(T), we obtain the likelihood function i=0

under the finer filtration (observing also the sizes n (T) - 1
of the software changes) by summing Aalen's I e j

expression (7) over all possible realisations of the
N; multiplied by their joint probabilities (8): 1 "(-)--I

- --=0 (14)

j=0 je
00 00 00 CO

YE Z ... 1 N: oPAN A(
N=N= "= b .... It can be shown (see Van Pul (1990)) that the

4/(, exp / 2 ( Ti) i K-1 X ML-estimators are consistent, asymptotically nor-
Vi=1' ,=O I mal distributed and efficient.

N 0 0! aI, Let us consider the PGIR model again as
aoNo" O 2 (N0+Nl-l) N.. given by (2)-(5). Note that the process N(t) is

N'= I Not i',=b, NI! unobservable. Thus defining the filtrations

I (NO+...+N,(,)-n(,r)) aJ Nnu , (11) .7 " { ns): 0<s<t }, (15),,,=0 N,,> 9F, = n (s), N(s) : 0 <s < t (16)

We note that if No+ --- +N_,=1 , that is, if we notice that the intensity A given in (5) is actu-

bI = I ( so we have to sum Ni from I to oo), then ally 0. the intensity function of the counting pro-

the coefficient (N 0 ±... +N-i) in the i-th sum cess with respect to the filtration 9. With use of

equals zero for N,=0. So we can take all lower the Innovation Theorem (see e.g. Bremaud

bounds equal to zero and use lemma 1 to get: (1977)), and another application of lemma I we
can show that the intensity function under the
filtration - (only observing the counting pro-

L1(i,4;(T, Ki),i=OJ,...,n(r)) - cess n(s),O< s<t and the software changes

[n(T) n Ki, i O..n (t -)) is given by
:= exp (T - Ti) It IIKi- ( of (I

1u Kie- #Q-. (17)
i0

X . a, T 1a. An interesting idea seems to set all the K equal
i=0 i=0 JO
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to some K except for Ko>>K. With parameters developers. So far, we did not get much response
N0 :=jtK0  and N: -f±K the failure intensity from them. Perhaps they should read Rook's
becomes (1990) Handbook on Software Reliability. In its

- n( ) preface Boehm resignedly states: "Sometime soon,
X(t ;,N0,N):Nce '0'+N4 X Kie'-T,. (18) software reliability is going to become a highly visi-

ble and important field. Unfortunately, given
In this three parameter model, N, the average human nature, its thrust into prominence will only
number of faults introduced per repair action, can happen once we experience the software equivalent
be interpreted to account for dependencies of the Chernobyl, Bhopal, or space shuttle Chal-
between faults. Whenever hidden faults become lenger disasters. Such a disaster is likely to happen
observable because of a fault repair, this can be in the next few years...".
considered as the introduction of new faults.
Finally note that for N=0 the above model
reduces to the well-known model of Goel- References
Okumoto (1979). Aalen, 0.0. (1978), Non-parametric inference for

a family of counting processes. Annals of
4. Regression models Statistics 6, 701-726.
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the process of introducing new faults is so
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where the zjj = l...m, are the known realisations be improved? IEEE Transactions on Software
of m software measures Zj (like e.g. size, com- Engineering 6, 489-500.
plexity, number-of-loops) at time T and where Musa, J.D. (1975), A theory of Software Reliabil-
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We have constructed a model, which is able puter Science, Amsterdam.
do deal with imperfect repair and software VanPul, M.C. (1991), Modelling Imperfect Repair
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perties.

In the field of regression models for
software reliability, there is in my opinion a lot of
interesting research still to be done. Essential will
be, however, the collection of real data (computa-
tion of various software measures) by software
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ABSTRACT Tests are Experiments

There is much from statistical methodology that can be Testing software based systems (or any testing) is an
brought to the testing of software systems. Both a general experimental process aimed at determining the state of the
paradigm for testing and an approach to assurance of system under test with respect to some standard (possibly
reliability will be derived from statistical methods. The not deterministic). As experiments, paradigms for statistical
testing paradigm provides both a general approach to the design of experimentation (DOE) can be applied to improve
specification, design and analysis of tests and potential for our understanding and further advance the state of the art of
reduced complexity of test equipment (thus reduced cost of software testing.
testing). The testing for reliable software approach gives us
a model upon which to start building theory for the Test Test
automated generation of tests which go beyond requirements, JHardware/Software in,,,
capturing the intelligent behavior of the experienced test
engineer. Relationships between this framework for testing
and work on statistical advisory systems for the design of
experiments and semantic understanding of text will be are

identified /

__JProduct HardwareL_
The goal of this paper is to provide connections between Platform
statistics and the testing of software based systems which are
not as obvious as software reliability growth modeling.
These connections have been derived from the past ten years
of testing, examining the process of testing and managing
the testing of embedded software in the avionics industry. Test Software
We will first examine an operating paradigm for the Software
development of effective tests and then look at how this
paradigm may lead toward automation of the more creative
aspects of the test development process.

This work has been evolving in the context of the Figure 1

development and test of systems which have significant user
interfaces. A major characteristic of these systems is that the A Stochastic Environment
user cannot be extricated from the system itself. Proper
operation depends on the appropriate interaction between the Generally software tests are considered to be deterministic
system and the user. Any breakdown of this interaction can with a clear pass/fail criteria. This is often not the case in
be the trigger of a failure. The resulting system is embedded systems and/or systems with significant user
necessarily stochastic. interfaces. A normal embedded software test environment

looks something like figure 1. Sources of random variation
In systems without significant user interface, there is at least are the user (or test engineer) and often the test equipment
the potential to produce a sufficiently rigorous specification which is attempting to simulate the operational environment
and implementation to remove the stochastic problems of the system.
created by the user. Such systems have the potential for
formal proof of correctness which eliminates the need for an As mentioned in the introduction, the user will introduce a
experimental approach to verification and validation, significant stochastic element into the test environment. It

is not desirable to remove this stochastic element since
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doing so makes our test input distribution even less like the
operational distribution the system must operate under. It is In better understanding this process and/or automating it, we
then less likely to catch problems which are important to will need to incorporate the knowledge from expert
the user. statistical advisory systems into the experiment design

engine. In addition, expert knowledge about what makes
If we are dealing with a system which is using hardware at 'good' hypothesis for qualification testing must be
or near the limits of current technology, the test equipment incorporated into the hypothesis engine.
may not be capable of providing adequate control to assure
deterministic operation. The result is again random Not shown in the diagram is the analysis portion of the
variation. Even if we are not operating at the leading edge of process which would take test data and help to generate the
technology, test equipment which does not utilize expensive report. Each of these components could likely be derived
state of the art components to provide a fully deterministic from existing work in various forms of statistical expert
environment is sometimes preferable. systems for design, analysis and inference.

Relation to Statistical Methods

Test objectives are equivalent to models and hypotheses in
experimentation. The model defines the portion of the
system of interest in the objective. Hypotheses then focus
the test upon particular components of the model.
Experimental design principles can then be applied to the
design of the test which provides the requirements for the
test environment. These requirements will include the degree
of accuracy necessary to provide sufficient power to the ,
hypothesis tests which make up the pass/fail criteria for the
testing.

Requirements Based Testing

Requirements testing is based upon hypotheses which are
selected from the system requirements. Models selected are
subsystems 'carved' from the system architecture and chosen
for compactness (minimal external connections) to reduce
test environment requirements while encompassing a Figure 2.
minimum of extraneous system components not directly
related to the hypothesis of interest. From this point, the DOE in a diital environment
test task is just the design of the necessary environment to
provide the control and data collection necessary to carry The application of experimental design is not a straight
through the experiment, forward exercise in the digital non-linear world of software

systems. On the surface, it would appear that we will run in
This whole process is almost identical to the process of to a combinatorial explosion of necessary test conditions
selection of appropriate experimental factors which provide a based on the discrete nature of the systems inputs and
sufficiently powerful test of hypothesis about the safety or operation. This is not necessarily the case however.
efficacy of a drug in pharmaceutical testing. The wealth of Fractional factorial designs can be used to reduce the
statistical methods applied in the certification of drugs in the combinatorial explosion, and aggregation (high level views)
pharmaceutical industry are then clearly applicable to the can be used to treat the system as essentially analog and
qualification (or certification) testing portion of software linearizable.
systems (or any other system for that matter). Consider a software module which has as its primary input a

In figure 2 we see a flow chart for the basic process 7 bit integer. If we view the 7 bits as independent two
undergone by a test engineer in developing qualification valued inputs, we can lay out an orthogonal design (27

-4 or
tests. Current versions of these systems are either human, or a Taguchi L8) giving us an orthogonal cross section of the
contain trivial 'engines' that just regurgitate requirements input space of the module with respect to the primary input.
typed in by the test engineer. Next generation versions of Assuming a pareto effect in faults and no high level
these systems are expected to operate as an advisor, interactions (singularities), we have an efficient set of test
incorporating the expertise of the test engineer (user) into cases for the module. Certainly more efficient than selecting
the process. a couple of integer values at extrema or randomly from the
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input range and not requiring more information about the
module than its interfaces. In addition to the basic problem of bringing user

expectations and specifications in line with what is
Pareto assumptions are reasonable in most software physically realizable, we have additional difficulties which
development environments today. All we're really assuming make real world systems more 'interesting' than ideal.
here is that the software faults are not 'dense' in the code. Usually, a user's requirements are handed to the developer in
The absence of singularities is a bit harder to deal with. the form of descriptions of responses to a limited region of
Techniques such as data dithering and data diversity are the input domain represented by the lines, disk and single
available to reduce the granularity of singularities. The point in figure 4. Analysis attempts to produce a 'convex'
problem cannot be entirely eliminated though. region which encompasses these initial requirements. Design

then proceeds to move this convex region toward a real
Application of experimental design can be made reasonably implementation. In the process the highly non-convex
obvious for some situations by taking a high level view of region depicted results from errors and physical constraints.
the system. Many functions which are implemented in an
embedded digital system (such as navigation) are inherently
analog in nature with only an overlying nonlinear mode
structure. Within any particular node, the operation of the
system is entirely analog at these high levels and Physcaly realized

experimental design or response surface methods are directly inptspac
applicable.

Ad Hoc Testing Spec

Testing to assure reliability of software systems (failure free
operation) must go beyond adherence to requirements to
address the validation of the system in an indeterminate
environment. This immediately implies the application of
statistics to the problem. But more than just statistical
procedures are applicable. The entire paradigm of statistical
modeling and hypothesis testing comes into play in this ,,.._nupc
environment. This type of testing is what is called ad hoc.

Requirements based testing can only get at a portion of the
aspects of a real system. This is because, as depicted in
figure 3, in the real world, expectations, specifications and Figure 4.
the reality of implementation seldom coincide. Initially,
we're lucky if they are not disjoint. Ad hoc testing then is aimed at those regions of the system

shown outside the abstract solution space in figure 4. In this

Expectations Reality region lies problems which are due to implementation which
goes beyond requirements and user expectations which don't
show up in the requirements. For example, the well known
ability of an early version of F-16 software that allowed the

x test pilot to raise the landing gear on the ground, probably
lies near the tip of one of the lobes! Idealistically, no such
aspects of the system exist, but as can be seen, this is
effectively impossible if for no other reason than that the
user's expectations are never constant or clear (since they are
necessarily developed and interpreted by humans).

Iterative Learning

The interactive ad hoc test process is an iterative learning
process much like that expressed in Box, Hunter and Hunter.

Specifications A test engineer begins with an initial hypothesis and
associated model of the system and iteratively hones each

Figure 3. into a clearer understanding of the system. This iterative
process is depicted in figure 5 as a tree structure. Each level
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of the process takes the current hypothesis and from it model from existing software systems. This is where current
specifies an appropriate model, designs and executes the work in semantic recognition comes in. We can think of a
associated experiment and uses the conclusions to refine and program as a living book. The basic story or class of stories
select the hypotheses for the next level. Note that the is fixed, but the details of the current instantiation of the
outcome of this refinement and selection may be a posterior story depend upon the data fed to the program.
distribution on the possible hypotheses which leads to
multiple paths through the tree. Statistical analysis of the digraphs which represent the

programs along with the variable and procedure names
In an expert system, the inference engine takes an initial set (assuming they're done with reasonable mnemonics) can
of facts and proceeds to 'fire' rules from these facts to deduce help us to develop the kind of basic 'story' lines that are
further facts. The primary difference in the ad hoc testing most often used in various classes of software. In these story
process is that the rule 'firing' is actually an experimental lines we have an abstract view of the underlying abstraction
process used to derive the rules from the real world rather which provides the basis for the software.
than a data base.
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models can be derived is a high level abstract model of the
type of system being tested. These experienced test engineers
use (even if they're not aware of it) a high level abstract
model of the system to guide the selection of hypothesis
without falling back upon requirements. These models are a
combination of operational experience and experience with
the kinds of things which can and do go wrong in the
development process and in real systems. Development of
these abstract models can benefit from work in extracting
semantic information from text.

In order to automate this process or improve our own
capability of developing systems we need to understand and
be able to produce this abstract model. Most test engineers
don't even realize they are working within this paradigm,
much less be able to transfer the knowledge of the model to
an expert system. Alternatively, we can derive the abstract
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Interfacing Physiologically-based Pharmacokinetic Modeling and Simulation Systems

Derek B. Janszen and M.C. Miller, III Biostatistics, Epidemiology & Systems Science
Medical University of South Carolina, Charleston, SC 29425

ABSTRACT limited model assumes that the transfer across the cell
"I The graphical user interface of a physiologically-based membrane is rate limiting, and thus reduces the tissue model
pharmacokinetic (PB PK) modeling and simulation system to 2 subspaces. Our system admits any of the above three
developed for the MacintoshTMl computer is described. The configurations for a tissue. The system also permits the
user interactively specifies: 1) the anatomical structure of the specification of four physiological processes which can
model (tissues) and the anatomical structure of each tissue; affect the distribution and flux of a substance: transport
2) physiological relationships; 3) transport characteristics; across a membrane, binding, excretion, and metabol-
4) thermodynamic properties of the substance. ism. A linear or non-linear formulation can be used for

The interface utilizes four independent interactive win- modeling these processes, depending on the available
dows: Model, Parameter, Kinetics, and Solution. The user information for a given process. Generally, a PB model may
selects tissues for the model and an exposure route from a include any or all of these processes.
flow diagram consisting of nine different tissues and four
possible routes of exposure, or from a menu. Assumptions IMPLEMENTATION OF PK MODELS
limiting the rate of mass transfer can be specified for each Although the PB approach to PK modeling is the method
tissue. Parameters for each tissue, as well as dosage of choice, there is, among some, reluctance to use this
parameters, are entered via dialog boxes. This method of approach because of the mathematics associated with the
specifying the model parameters encourages "What if...?" method (D'Souza and Boxenbaum, 1988). Nevertheless,
scenarios. The model is cast in an S-system format for ease progress in the development of computer software for solv-
of solution and for added flexibility in simulating inherently ing the system of differential equations generated by these
nonlinear biological systems. The system generates a steady- models is being reported.
state solution, which can be plotted as multiple tissue The literature describes three modeling methods. They in-
concentration-time curves on a configurable graph. The data elude utilization: 1) of a fixed model simulator where the
files can be exported to other graphics and statistics number and/or types of tissues are fixed (Bloch et al., 1980;
packages. The pictorial flow diagram, a table of all tissue Gabrielsson and Hakman, 1986; Menzel el al., 1987); 2) of
parameter values, the steady-state solution set, and the a general simulation system (Blau and Neely, 1987); and
graphic plots can be printed.. 3) of spreadsheet-based simulators (Ball et al. , 1985;

Johanson and Naslund, 1988).
INTRODUCTION At the heart of these modeling methods are the algorithms

Physiologically-based pharmacokinetic (PB PK) models used to solve the system of differential equations. Since
utilize a system of lumped compartments which are designed algebraic solutions are not available for these complex
on the basis of the actual anatomy and physiology of the models, they must be approximated by numerical methods.
species. Model parameters fall into four broad categories: Two terms used to characterize these numerical methods are
1) anatomical, e.g., organ volumes and tissue sizes; accuracy and efficiency: by accuracy is meant the error
2) physiological, e.g., blood flow rates and enzyme (difference) between the numerical solution and the true
reaction rates; 3) thermodynamic, e.g., drug-protein solution; by efficiency is meant the "cost" of the solution
binding isotherms; and 4) transport, e.g., membrane per- in terms of convergence of the estimation procedure, which
meabilities (Himmelstein and Lutz, 1979). is generally equated to computer time. Some of these

The first step in the development of a PB model is to methods are very simple, easy to program, and are efficient;
select the number and type of tissues. Once the tissues are their disadvantage is that they do not give very accurate
selected, a flow scheme is drawn with the desired regions de- results. Other methods, while achieving better accuracy, are
scribing the species anatomically (Figure 1). The liver, gut, more difficult to program and are less efficient.
spleen, and pancreas (enterohepatic system) are intercon- The modeling system described in this paper utilizes the
nected anatomically, maintaining the physiological basis. Power-Law Formalism (Savageau, 1969; Voit, 1991). It

Each tissue is initially considered to consist of three admits several system-modeling strategies. Table A is a
homogeneous subspaces: (a) a vascular space through mathematical representation of a generalized tissue with
which the tissue is perfused with blood; (b) an interstitial three subspaces, denoted by the subscripts 1, 2, and 3. This
space, which forms a matrix for the tissue cells; and (c) an model expresses -hanges in mass in terms of blood and
intracellular space consisting of the tissue cells that tissue concentrations, and general flux and biotransformation
comprise the organ (Figure 2). terms. In this representation, biotransformation (metab-

Rate-limiting assumptions may simplify the 3-subspace olism/excretion) can only occur in the "cellular" subspace.
model to one or two subspaces. The flow-limited model This representation also permits this set of equations to be
has a single space and is used to model tissues that are not used for modeling flow-limited and membrane-limited config-
well perfused by the circulatory system. The membrane- urations by setting appropriate terms equal to zero.
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Table B describes the characteristics of the possible tissue selection of which tissues or metabolites to graph, etc.),
configurations admitted by the generalized 3-subspace model, plotting of experimental data, and for any other parameters
The number of subspaces, presence or absence of biotrans- needed for solution of the set of differential equations.
formation and flux terms, type of flux (ACTive or The Solution window displays the resulting simulation
PASsive), and type of biotransformation (LINear or data in a columnar format. The user can specify the
Michaelis-Menten) are specifically enumerated. frequency with which the time points are displayed (e.g.,

Table C is the S-system representation corresponding to every sixth time point).
the linear system of Table A. This set of three S-system The set of differential equations generated by the selection
equations can describe all possible configurations for a and specification of tissues are solved by incorporating the
3-subspace tissue. In the S-system approach the different necessary modules from ESSYNSTM, an interactive program
configurations are admitted by altering the values of the written for the analysis of mathematical models expressed in
parameters according to the rate laws that are in effect for a S-system form (Irvine and Savageau, 1990; Voit et al., 1989).
particular configuration.

Our "PB-PK" modeling and simulation system is a DISCUSSION
flexible and generic PB PK modeling and simulation system As in all simulation systems, our modeling system is
developed for the Macintosh TM computer. The user inter- dependent on external estimation of PK parameters used in
actively specifies: 1) the anatomical structure of the model the model. These estimates may be derived from: the
(tissues) and the anatomical structure of each tissue (i.e., the literature; the investigator's previous experience; classical
parameters of the vascular, interstitial, and intracellular sub- parameter estimation experiments; or reflect a hypothesized
spaces); 2) physiological relationships (blood flow rates for value. Although many physiological parameters are
each tissue, metabolism and excretion of the substance); available in the literature, others, such as binding constants,
3) transport characteristics, which also entails identification frequently are not. When experimentation is not possible in
of flow- and membrane-limitations; and 4) thermodynamic humans the investigator must rely on in vitro or animal
properties of the substance (tissue partition coefficients). studies.

The graphical user interface closely adheres to the human PB PK models are attractive for a number of reasons. First
interface guidelines proposed by Apple Computer (1987). and foremost they are physiologically and anatomically

The application has four independent interactive win- correct. Second, they admit non-linear relationships. Third,
dows: Model, Parameter, Kinetics, and Solution. they may be cast in the form of S-systems, thus making
The content of each window can be printed, and the model them mathematically tractable. Fourth, these systems may
(including parameters) and simulation data (sim-data) saved be easily modeled using our system. Finally, these models
independently as files. The sim-data file format allows it to may be used to visually describe system dynamics and status
be exported to other graphics and/or statistical applications, through the graphical user interface. The classical approach

The user defines the anatomical model in the Model to PK modeling relates dose and plasma concentration. The
window (see Figure 1). This requires selection on a flow physiological approach goes one step further to relate dose,
diagram consisting of a subset of the nine different tissues plasma, and tissue concentrations (Ritschel and Banerjee,
identified in the window: lung; heart; liver; gut; spleen: 1986). 1urthermore, it is adaptable to changing physiological
kidney; muscle; testes; and "other". There are four possible circumstances and can allow for species-to-species and even
routes of exposure: intravenous (IV), intramuscular (IM), subject-to-subject differences within the context of the
oral, and inhalation. physiological or anatomical parameters in the model

Parameters for the tissues are entered by means of dialog (Himmelstein and Lutz, 1979). Perturbation of a particular
boxes (Figure 3). The user chooses the tissue configuration, parameter allows one to predict the changes in distribution
depending on rate-limiting assumptions. The number of or disposition of the drug during disease states, for instance,
parameters to be specified in the dialog box is a function of or in the presence of another drug. The combined effect of a
this selection. An array showing the values of all the model number of complex inter-related processes can also be
parameters is displayed in the Parameter window, determined provided sufficient data are available (Ritschcl and

Exposure route parameters are also entered via a dialog box. Banerjec, 1986).
The dosage regimen (Figure 4) admits a bolus or continuous
dose, with the user able to specify the time at which the SUMMARY
dosing occurs, as well as the fraction, F, that is absorbed Physiologically-based pharmacokinetic modeling is
into the blood. Because of the modular format used in the rapidly gaining acceptance as a method for simulating tissue
development of this software, it will be possible to drug concentrations based on anatomical and physiological
incorporate more complicated dosing regimens (e.g., the uni- parameters and thermodynamic properties of the drug.
versal elementary dosing regimen (Sebalt and Kreeft, 1987)) Currently available software systems that use the physio-

The Kinetics window (Figure 4) displays the results of logically-based philosophy are limited by the assumption of
the simulation once the model has been selected and the a particular type of physiologically-based model. Using a
parameters entered. Dialog boxes are linked to this window simulation language to define a complex model can be
to allow for configuration of the graph (time in hours/days, tedious. The Janszen-Miller "PB-PK" system is an interactive
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generic physiologically-based pharmacokinetic model-ing Menzel, D.B., R.L. Wolpert, J.R. Boger Il1, and J.M.
and simulation system wherein specification and modifi- Kootsey. 1987. Resources available for simulation in
cation of the model is facilitated by the graphical user inter- toxicology: specialized computers, generalized software,
face of the Macintosh TM computer. It allows great flexibilty and communication networks. In Pharmacokinetics in
in specifying a model, as well as ease of specifying the Risk Assessment. (National Research Council).
model parameters, and encourages "What if...?" scenarios. Washington, DC: National Academy Press, pp. 229-250.
The user selects tissues for the model and an exposure route Ritschel, W.A. and P.S. Banerjee. 1986. Physiological
from an anatomical flow diagram or from a menu. pharmacokinetic models: principles, applications,
Assumptions limiting the rate of mass transfer can be limitations and outlook. Meth. Find. Expil. Clin.
specified for each tissue. Parameters for each tissue, as well Pharmacol. 8, 603-614.
as dosage parameters, are entered via dialog boxes. The Savageau, M.A. 1969. Biochemical systems analysis. II.
model is cast in an S-system format for case of solution and The steady-state solution for an n-pool system using a
for added flexibility in simulating inherently nonlinear bio- power-law approach. J. Theor. Biol. 25, 370-379.
logical systems. The system generates a steady-state solu- Sebalt, R.J. and J.H. Kreeft. 1987. Efficient pharmacoki-
tion, which can be plotted as multiple tissue concentration- netic modeling of complex clinical dosing regimens: the
time curves on a configurable graph. The system allows one universal elementary dosing regimen and the computer al-
to examine concurrent concentrations of a substance and its gorithm EDFAST. J. Pharm. Sci. 76, 93-100.
metabolite(s) within vascular, interstitial, and cellular com- Voit, E.O. (ed.) 1991. Canonical Nonlinear Modeling: S-
ponents of a single tissue or organ; plot these values over System Approach to Understanding Complexity. New
time in the presence of single or repeated dosing; plot exper- York: Van Nosirand Reinhold.
imental data; and to generate data files for export to other Voit, E.O., D.H. Irvine, and M.A. Savageau. 1989. The
graphics and statistics packages. The pictorial flow diagram, User's Guide to ESSYNS. Charleston, SC: Medical
a table of all tissue parameter values, the steady-state University of South Carolina Press.
solution set, and the graphic plots can be printed.
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Productivity at stake: Challenges for
computing in the 1990's
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systems.

7 The computer technology in the 1990's One of the pressing challenges for
will provide many opportunities to improve management will be integrating existing
productivity. A company's strategy to integrate systems with new technology. Many
its existing technology with emerging current applications have been developed
technology will determine how well it takes in-house using methodologies that are now
advantage those opportunities. The goal of this obsolete. For example, databases may have
paper is to discuss the primary factors that been developed when there was little or no
will impact on productivity within the formal database management system
computing environment. The discussion will available. Failure to keep up with current
center on coping with existing technologies, technology through capital investment and
computing innovations, automation platforms continued education can lead to aging
and contemporary management issues., home-grown systems, housed in a

collection of primitive hardware.
Perhaps one of the major obstacles to

introducing new computing technology
remains ineffective communication.

COPING WITH AND CHANGING Systems managers as well as users have
OBSOLETE SYSTEMS communications responsibilities. Systems

managers should be well informed of
changes in computing technology and

g Traditions 2L ,e inform end users how it may benefit them.
(-own( Mtoy Users need to take the initiative to clearly

Sr.oo Comtnr ,cabon maogp- Pp define their application needs. InE sental tool of thru changesth s
Esoioooftuchanges ld >cooperation, these two groups can develop

Pnrtve Softwareso
Hadwae To Me.d or appropriate strategies to mend, change or

hange replace existing systems with new
technology. Additional communication is
needed with the general user community
so they undcr-tand how change will

IFigure 1 benefit them. Understanding the corporate
culture and traditions will facilitate these
communications. Figure 1, above,
highlights the essential components for
effective transition from obsolete systems
to a new technology.
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automation and data communication. The
Computing Innovation, major factors (see Figure 3) that will

impact these two areas are: the evolution
Computing innovations in hardware, of Integrated Services Digital Network (a

software and communication have technology that integrates data, voice and
revolutionized the way we process information, graphic information on digital lines),
The development of fast computer chips and integration of remote and central
processors, the advent of new and flexible processing capabilities and development of
operating systems, and improvements to data systems tolerant of different languages,
communication provide greatly enhanced software and hardware.
computing opportunities. Figure 2, below, An example of productivity
illustrates some of the features of these enhancements in clinical information
emerging technologies. processing is the development of the

concept of remote study monitoring (RSM)
and evolution of computing systems to
support it. Traditional clinical information

COMPUTING INNOVATIONS processing often involves a collection of
remote site investigators who treat

PC patients and fill out forms that describe
.... .. . - their medical history and responses to

-h,,aon'Oata Aess --- therapy. These forms are usually collected
Information Transfer or mailed to a central site for data entry,

- Resource Sharing [I- J data editing and study conduct monitoring.
* Computer Performance

Automated Processing Any discrepancies are mailed or
telephoned back to the remote investigator

I site for resolution. This process is often

complicated and time consuming. RSM
technology has been developed so that data
entry, editing, review and clean up can be

Figure 2 done at the remote site in a very user-
friendly manner. Data from the remote

The challenge is to effectively employ these site can be automatically transferred to the
innovations to facilitate rapid application central site overnight using modems and
development, data access, faster information telephone lines. Study monitors at the
transfer, resource sharing, enhanced computer central site can review the data and
performance and automated processing for the communicate with remote sites via
benefits of computer users. electronic mail. In principle, such systems

Productivity enhancement often requires can eliminate some of the complications,
large initial investments of time and capital. It reduce data errors and time delays in
is imperative that senior management traditional clinical information processing
understands the costs and benefits of systems. Implementation of these systems
computer enhanced productivity improvements may involve all the factors impacting
and provide adequate funding. productivity and automation mentioned in

Figure 3.
Other examples of productivity

Productivity in clinical information enhancing tools in clinical information
processing - an example. processing include digital imaging and

electronic note pad technologies. The first
Productivity enhancement in clinical could be used to electronically convert

information processing will involve both documents to digital data. The second
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could be used to directly enter clinical data on benefits. Figure 4, below, illustrates
hand-held electronic note pads without the use commonly introduced programs.
of paper forms. Introduction of automated
data processing should be ajoint responsibility
between systems managers and computer
users as discussed above.

EMPLOYEE MOTIVATIONS
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Hih sped Conferencing
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Figure 3 Conclusion.

Contemporary Management Challenges. The growth in technology and
emphasis on productivity will put a

The advent of the personal computer has tremendous amount of pressure on the
dramatically changed the computer side of the knowledge workers of the 1990's. Unless
work place for the knowledge workers. The properly managed, the result could be
human side of that work place has also excessive stress and burnout, causing a
changed. For example, there is more cultural decrease in productivity instead of an
diversity in offices today than there was ten increase, lack of job satisfaction instead of
years ago. Experts predict that this trend will sustained motivation and poor
continue into the future. Senior and middle communication among peers and between
managers must face the challenge of supervisors and their subordinates. As the
effectively managing groups of workers with authors have described, successful
different skills, backgrounds and motivations, implementation of new technologies to
Specifically, managers and supervisors need to improve productivity requires clear
stimulate and sustain motivation on the job, understanding of existing systems and
provide exciting career potential for their corporate culture, firm grasp of the
workers and in general provide a work place benefits of new technologies, careful
conducive to productivity enhancements. It is transition planning among systems
unfortunate that many organizations spend managers and users, and management
tens of thousands of dollars recruiting talented appreciation of the special needs of the
workers only to provide little or no challenge knowledge workers.
for such workers. It is encouraging to note
that creative benefits are being introduced in
the work place. Flexible work hours and
educational assistance are two of these
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A Comparison Of Some Robust Procedures For Estimating A Linear Discriminant Function
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3. Robust estimate of Al , 2, E in LDF: e.g. Huber-type
M-estimates (Randles et al. 1978).
4. Estimate 13 and c directly to obtain an optimal

A number of methods have been suggested for robustly projection: e.g. nonmetric discriminant analysis(NDA)
estimating a linear discriminant function. These include (Raveh 1989).
substitution of robust estimates for the mean and Of these four different procedures, nonparametric
covariance matrix and methods which choose a projection density estimates (#1) require large sample sizes and the
to maximize a robust measure of separation. This paper algorithm is complicated; the disadvantage of transforma-
presents results of Monte Carlo simulations comparing tions (#2) is that each time to classify a new observation,
some of these methods along with various modifications to it is necessary to go back to find the rank or normal score
see whether relatively simple methods works as well as of this new observation; projection methods (#4) are very
complicated ones. difficult for more than a few variables. Robust substitution

procedures (#3) are relatively simple and easy to compute
Introduction and are the focus of this study.

The original purposes of this study were to
For the two population discriminant analysis, if t (.), f2 (.) 1. Compare effect of using different robust estimates of
are the density functions of the underlying populations and location and scale in LDF on misclassification rates.
assume equal costs, equal priors, then 2. Compare variability of misclassification rates under dif-

ferent procedures.
£1 (x) > M 1 However, the result of 1 indicated that a very simple
f 2 (x) procedure which I called MLDF worked about as well as

any of the other estimate procedures. Therefore, we added
gives the optimal discrimination rule. a third objective: compare the MLDF to other procedures
If further we assume that 1 (x) and f; (x) are normal with of all types in the literature.
common covariance matrix, then we have

Some Results from Simulation
I'x > ( : ) c

We used the following robust estimates of covariance in
where this study

( . - P2 ) Cov(XIX,)=R(X X ) *MAD(X )*MAD(X)

C = -- ( P1 + V2 )/.- 1 (pL1 - P2 ) where R(X,x) is Pearson's r, Kendall's T, Spearman's p,
or greatest deviation correlation coefficient Rg (Gideon &
Hollister 1987). MAD(XN) is the median absolute

In practice we use the sample mean R and pooled sample deviation. A Huber-type M-estimate for covariance was
covariance matrix S for p and E, and this gives the linear also used. Two robust estimates of location were used in
discriminant function (LDF) , which is widely used in addition to the mean: the median and a Huber-type M-
practice. But the LDF is not robust to violations of the estimate (Randles et al. 1978). We substituted these esti-
normality assumptions (Lachenbruch et al. 1973). mates of location and scale in LDF. In the simulation we

There are several approaches to deal with this problem: considered only bivariate distributions, that is p = 2. The
1. Use nonparametric density estimates of 4 (x),f; (x) distributional situations were normal, lognormal, mixture

(Koffler et al. 1978). normal and bivariate Cauchy distributions. We found that
2. Transformation: e.g., rank transformation, normal score for all these situations, the estimate of the covariance

transformation (Conover & Iman 1980, Koffler et al. 1982). matrix had little effect on misclassification rates, at least
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with the estimates we used. The median worked as well as Table 1. Average Percentages Misclassified Using
M-estimates for location, and both were better than mean. Different Location and Scale Estimators in LDF

Results for lognormal, mixture normal and Cauchy
distribution are reported in Table 1 and are representive Location Estimator
of all the results.

For mixture normal situation, the two populations were: Covariance Mean Median Huber-type MeanEstimator

0(4 1)]+0.1,4(2 01 (400 1001 Pearson MNa  39.0 33.7 33.3
) : 0".9* 0 1 '0 ' 100 1O00J LNb 12.4 13.4 12.0

Cc 41.6 34.8 35.7
Spearman MN 39.2 32.5 31.9

2.1)(41j..14()(40 00]LN 11.8 12.0 11.5
092:0.9 0 "o100 100+ *C 42.9 33.0 34.1

Kendall MN 39.8 32.8 32.1
LN 11.0 11.7 10.9

Lognormal distributions were generated from independent C 42.5 33.0 33.8
normal with unit variance and mean (3,0) and (0,0). Rg MN 40.0 33.0 32.1
Bivariate Cauchy random variables were generated by the LN 11.2 12.0 11.1
transformation Y = Z/sqrt(S) + p, where Z is multivariate C 42.7 33.0 33.6
normal distribution with mean 0 and covariance E and S Huber MN 31.9
is X2 (0) distribution with 1 degree of freedom (Johnson LN11.9
1987). The underlying normal distributions to generate LN 34.
Cauchy distributions were: C__4.7

a Mixture Normal

79: (i 0.5)]
0)J (015 1c Cauchy

We compared these two procedures with several

(4 published studies.
'[ 2  1.78) 3 9 (1) A Comparison with Randles et al. Study (1978)

: 1.7 8/ \' 9 Randles et al.(1978) introduced a generalization of LDF
i.e. RrH procedure and also LDF with Huber-type M-
estimate procedure using rank cutoff RLH. For R' H

A rank cutoff point was used instead of a zero cutoff procedure, they took a nondecreasing, bounded odd
point in LDF based on Randles et al. (1978). function T" as a measure of separation and found the

direction which maximizes this measure. They considered
the distributional situations in Table 2. To their results,Sugestion and Sonme Comparisons which are given in Table 3, we have added results for

the results above we chose the following proce- MLDF and RMLDF from a new simulation (with different
Based on the sudy: random numbers). We see from this table that the

(1) MLDF procedure Substitute median vector for the RMLDF procedure works as well as the more complicated
mean vetnLDF hiledue:ustiuteeing vto for Eadw the RT-H procedure. In particular, consider the situational

cu eto nsituation 8, where the distributions were contaminated, not(2) RMLDF procedure: Substitute median vector for the only by changing the standard deviations but also changing

mean vector in LDF while still using S forE but with rank the mean. The mean is a relatively bad estimate of
cutoff (Randles et al. 1978). Rank cutoff point is used to location, but the median is not much affected by the
balance the misclassification rates between two groups. We outliers and thus produced relatively good estimates.
chose as a cutoff point a point such that the relative
proportions of the misclassified observations of the two
groups by the discriminant function scores were as equal
as possible.
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Table 2. Distributional Situations compares favorably with the nonparametric methods. But
it seems that MLDF method doesn't work as effectively as

Population 1 Population 2 the RLDF method.

Al A2 al 02 Al P2 01 02 Table 4. Percentage Misclassified when

Na 0 0 1 1 1 1 1 1 nl= n2= 64 (lognormal situationst

N 0 0 1 1 1.781.78 2 3 1l = p=2 ju=3
LNb 1.65 1.65 1 1 2.65 2.65 1 1
LN 1.65 1.65 1 1 3.43 3.43 2 3 LDF 34.1 26.6 22.5
MN c  0 2 1 2.01 0 2 1 NN 31.8 22.7 12.4

0 0 20 10 2.01 0 20 10 P-C 35.0 19.5 7.8
MN 0 0 2 1 3.19 0 4 3 L-Q 34.4 17.5 7.0

0 0 20 10 3.19 0 40 30 GESS 30.9 17.5 12.4
MN 0 0 2 1 2.01 0 2 1 RLDF 32.5 15.4 6.3

2.010 20 10 0 0 20 10MN0 02 1 3.19 0 43 LDF 34.4 26.2 23.0
3.19 0 40 30 0 0 20 10 Huber 33.5 18.5 11.93.190__ 40_30_ 0_0__ 0_10_(with rank cutoff)

a Normal MLDF 33.7 21.1 16.7
b Lognormal RMLDF 33.7 20.5 12.0
c Mixture Normal (0.9 of first, 0.1 of second)

a Top part of table reproduces results from Koffler & Penfield(1978).
Table 3. Empirical Percentages Misclassified and results from Conover & Iman (1980). Bottom part of table contains

when nl = n2=30 results of a new simulation.

Situation LDF RLH RT H RMLDF Figure 1 displays the plots of the estimated standard
1 2929 2929 2929 2830 deviation of misclassification rates versus average overall
2 17 33 27 28 28 28 24 29 misclassification rate of the three procedures taken from
3 22 31 26 26 26 26 26 27 several simulation situations. If two procedures have the
4 1440 2526 2626 2627 same overall misclassification rate, but one has less
5 40 35 33 29 34 30 33 32 variability in the misclassification rate, then the first
6 23 44 30 31 3334 3033 procedure would be preferred.. The Huber-type M-
7 40 39 3331 3632 3433 estimate procedure and the RMLDF procedure have less
8 41 37 30 31 32 33 30 31 variability of the misclassification rate than the LDF

Notes: 1. Maximum SE of estimates is 1.8. procedure.

2. Results for LDF, RLH and Rr H are from Randles et al.(1978). Overall, the RMLDF method is simple and appaers to

(2) A Comparison with Koffler & Penfield(1978), Conover perform well relative to other nonparametric procedures.

et al.(1980)
Koffler and Penfield (1978) used four nonparametric Acknowledgement
density estimation procedures: nearest neighbor (NN),
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generated from independent normals with unit variance Communications in Statistics, Theory and Method, A9(5)
and means p and 0 for population 1, and means 0 and 0 465-487.
for population 2, where Is = 1,2,3. The results appear in Johnson, M.E. (1987), "Multivariate Statistical Simulation",
Table 4. For lognormal populations, RMLDF is clearly to Wiley, New York.
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Abstract to choose an appropriate weight function we must first
explore the behavior of several weight functions with a

Noisy complex-valued data, for which robust regres- variety of long-tailed complex symmetric distributions.

sion techniques are the natural analysis approach, arise In Section 2 we briefly review the univariate complex

in many physical fields. Evaluation of the efficiency of normal. We then define several related univariate sym-

such techniques requires that their behavior be charted metric complex distributions.

over a series of known reference distributions. We have In Section 3 we discuss M-estimation of the regression

defined several symmetric long-tailed complex distribu- coefficients. We evaluate all the by now standard weight

tions (e.g., complex slash, complex Cauchy, complex functions (Huber, Cauchy, Welsch, Logistic, Fair, Ham-

double exponential) based on complex normal distribu- pel, tanh, biweight, and Andrews), the Thomson weight

tion. We have compared via the maximin method the ro- function (Chave, Thomson and Ander, 1987), and intro-

bustness of different regression M-estimators (as defined duce a new function that we call the Modified Thomson.

by their weight functions) over these distributions. The To find the best (robust) weight function for the M-

variances of the estimators of the regression coefficients estimation of the regression coefficients, we use in Section

are obtained by simulation over all the distributions and 4 the concept of relative optrim-efficiency. We compare

for all the weight functions. The relative efficiencies over the performance of the set of estimators over the set of

each distribution are obtained and then these relative long-tailed complex distributions by a simulation study.

efficiencies are compared over different distributions to Our recommended procedure for the M-estimation of

identify the best weight function. Three different sam- a complex-valued regression coefficient is to use two dif-

ple sizes 5, 11 and 15 have been used for this purpose. ferent sets of iteration, each based on a different weight

We apply our estimators to the evaluation of the Mag- function. We have used this technique to improve the

netotelluric response function. estimation of Magnetotelluric functions in a companion
paper (Ghosh and Heiberger, 1991).

KEY WORDS: Robustness; Regression; M-Estimators;
Complex-Distributions. 2. Symmetric Complex Distributions

1. Introduction We are interested in those complex random variables
Z = ZR+iZI whose density functions fc(z) are real and

Many physical settings provide data for which linear equal to the real-valued bivariate density gR(zR, zr), that
regression is the physically appropriate analysis tech- is
nique. In one such technique, the Magnetotelluric fC(z) = gR(ZR,zI) (2.1)
method, the complex-valued Fourier transforms of the Denote the real-valued marginal densities of the real and
electric and magnetic fields measured on the earth's sur- the imaginary components of Z by hR(zR) and kj(zt).
face are treated as the response and explanatory vari- We also require that
ables respectively. Robust techniques are needed to re-
move high leverage noise contamination in the electric hR(U) = ki(u) (2.2)
field attributable to electrical activity in the ionosphere. We list in Table 1 nine different symmetric complex

In this paper we use M-estimation, an iteratively distributions ordered according to increasing tail weight
reweighted least squares technique where the weight ma- (radius of the 93%ile), ranging from the almost-familiar
trix w is a diagonal matrix with real positive weights. complex normal to the heavy-tailed complex Cauchy
The distribution of the contaminating noise is not with independent real and imaginary components.
known; therefore the best function for producing the We give in Section 2.1 Goodman's (1963) definition
weights from the observed data is not known. In order of the complex normal. We constructed the remaining
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distributions and derived their density functions (Ghosh 2.5 Complex Slash with Dependent
1990). The derivations are straightforward applications Components, CS(D)
of the transformation of variables method and are ex- Let X = (XR + iX) - CN(0, 1) and Y - U(, 1)
ceedingly tedious. independent of each other. Then,

2.1 Complex Normal, CN Z = ( ) + i ( y ) (2.7)

Goodman defined a complex normal random variable is Complex Slash with Dependent Real and Imaginary

as a complex random variable whose real and imaginary Components, CS(D).

parts are independent bivariate normal. Let Z follow the
univariate complex normal, to be denoted Z - CN(O, 1). 2.6 Generalized Complex Slash, GCS
Both equations (2.1) and (2.2) are satisfied. The p.d.f. Y = (YR + iYj) is said to follow a univariate complex
of Z is give by uniform distribution CU in a unit disk if its probability

f(z) =e-(R+z') - 00 < ZR, zI < c (2.3) density function is given by 1/vr for Jy12 < 1. Let X =

Independence of the real and imaginary components in (X k iXI ) CN(O, ) and Y = (YR + iY) - CU(unit

the univariate complex normal has been assumed to al- disk) independent of each other. Then,

low easy extension to the multivariate complex normal. Z X~ ( 2Xgd) + i (X1YMY x~ar) (2.8)

2.2 Complex Cauchy with Independent has a Generalized Complex Slash, GCS, distribution.

Components, CC(I)
2.7 Complex I Distribution, CT

Let X = (XR+iXI) -" CN(O, 1) and Y = (YR+iY) 2i

CN(O, 1), independently. Then Let X = (XR+iXI) - CN(O, 1) and Y = (YR~iYI) -
CN(0, 1) independent of each other. Then,

Z = R Y1(2.4)
+=(!)= - 9 (XR}'R+XII',\ + (2.9)

is a Complex Cauchy with Independent Real and Imag- = k -P) \M mIy

inary Components CC(I). follows a Complex t distribution, CT, with 2 degrees of
freedom.

Note that the familiar real variable definitions do not
2.3 Complex Cauchy with Dependent always generalize to complex variables in the anticipated

Components, CC(D) way. The real-valued Cauchy distribution is defined as

Let X = (XR + iXI) - CN(O, 1) and Y - N(0, 1/2) the ratio of two independent standard normal variables.
independent of each other. Then, But the ratio of two independent standard complex nor-

mal variables gives a complex-i distribution with 2 de-
Z = (4-&) + i (- V) (2.5) grees of freedom, not a complex Cauchy. The complex

is Complex Cauchy with Dependent Real and Imaginary Cauchy was given in Sections 2.2 and 2.3.
Components, CC(D). Note that independence of the real
and imaginary components is not required to satisfy con- 2.8 Complex Double Exponential Distribution,
ditions (2.1) and (2.2). CDE

Let Xj = (XjR+iXj) - CN(0,1) j = 1,2,3,4
2.4 Complex Slash with Independent independent of each other. Then,

Components, CS(I)
Z = (X1RX 2 R+XaRX 4 R)+t(X'IX 21+X3IXI) (2.10)

Let X = (XR + iXi) -. CN(O, 1) and Y1,Y 2 both - Z

U(O, 1) independent of each other and also independent has a Complex Double Exponential distribution, CDE.
of X. Then,

Z - (Y)+i (') (2.6) 2.9 Complex Logistic Distribution, CL

is Complex Slash with Independent Real and Imaginary The CL distribution is defined so that the joint distri-
Components, CS(I). bution of the real and imaginary parts follows a bivariate
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logistic distribution and each of the real and imaginary where * is a N x 1 vector whose jth element is the in-
components follows a real univariate logistic distribu- fluence function 0(11). We solve equation (3.3) by ex-
tion. pressing it as a weighted least squares problem

XH wr = 0 (3.4)
3. Regression M-Estimators and Weight where r is N x 1 residual vector, w is N x N diagonal

matrix of weights whose jth diagonal element is wj =
The M-estimate, or maximum likelihood type esti- (!d )/('d)" The solution to equation (3.4) is given by

mate, TN based on a sample (XI, X2 ,.. , xN) of size N, iteratively solving

is the value of t that minimizes the objective function

j=1 p(xj - t). The loss function p is assumed to be 3 = (XHwX)- (X"wy) (3.5)
continuous, and has derivatives with respect to t at all
values of t. We calculate TN by finding the value of t The weights at each iteration are computed from the
that satisfies the equation YjI~ ik(z, -t) = 0 where residuals and scale estimate of the previous iteration.t(u) = d-4fpu) A practical choice of the scale factor d is ,a. SQ is

Let us consider the linear regression model the sample interquartile diameter of the complex resid-
uals and 0aJQ is the population interquartile diameter of

y = X # + r (3.1) the underlying distribution of r.
NxI Nxq qxl Nxl

The M-estimation process minimizes a norm of resid- 3.1 Modified Thomson Weight Function (M-
uals, as does the least squares process. But the misfit Thomson)
measure in M-estimation is chosen so that a few extreme Thomson's weight function is different from the others
values cannot dominate the answer. The M-estimate is lis on 1 be t is dtaeadaptive. the qtae-obtaned y sovinglisted in Section I because it is data adaptive. The quan-
obtained by solving tity a in Thomson's weight function is the nth quantile

min )-§= p ( ) = min, RHR (3.2) of the assumed underlying distribution. The point atwhich the downweighting begins depends on both the
where minimization is done with respect to /f, and R is a underlying distribution and the sample size n.

N x 1 vector whose jth element is P(!), r = Y -X /3 We found that Thomson's weight function is robust

is the jth residual, and d is a scale factor. In the special to several underlying distributions but does not work

case with p(u) = u2 and d = 1, M-estimation specializes quite well enough for very heavy-tailed distributions. We

to least squares estimation. therefore proposed a new weight function, a modification

Equation (3.2) yields solutions of the non-linear sys- of the Thomson weight function:

temxH = 0 (3.3) w)- exp [(ln a)(-e (1u1- ))] (3.1)

Table I displays the a values for the 80th, 91st and 93rd
quantiles of the complex distributions (corresponding to

Table 1. Interquartile diameter o'JQ and the 50th, 80th, n = 5, 11, 15).
91st and 93rd quantile radii for complex distributions. The advantage of the M-Thomson weight function

over Thomson's function comes from the change in the
Distributions oIQ 50th 80th 91st 93rd base of the exponential as a changes. It downweights

CN 1.66 0.83 1.27 1.55 1.64 the potential outliers as the sample size increases to a

GCS 2.52 1.26 2.16 2.35 2.37 greater extent than does Thomson's weights. For small-

CS(D) 3.50 1.75 2.47 2.53 2.54 tailed distributions like CN, GCS and CS(D), the M-
Thomson function puts more weight on the valid data

CDE 2.70 1.35 2.43 3.27 3.59 and also protects non-outliers from too much down-
CT 2.00 1.00 2.00 3.16 3.74 weighting. For mid-size distributions like CDE, CT and
CL 3.72 1.86 3.11 4.08 4.46 CL, M-Thomson's weight function rapidly downweights
CC(D) 3.46 1.73 4.90 10.95 14.97 data points that are beyond the nth quantile. For large-

CS(l) 4.23 2.11 5.60 12.39 16.91 tailed distributions like CC(D), CS(1) and CC(I), the
M-Thomson and Thomson weight functions give almost

CC(1) 4.40 2.20 6.23 13.97 19.31 identical results.
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4. A Simulation Study well enough for long-tailed distributions. The Modified
Thomson function is often the best, dominating all the

We have evaluated the weight functions listed in Sec- others except with the very long-tailed complex Cauchy
tion 1 over the distributions defined in Section 2. distributions where it gives results similar to the Thorn-

In order to find the best M-estimator (weight func- son function.
tion) of the regression coefficients for complex-valued
data we compare the different weight functions using the
maximin approach. Our presentation is based on Chap- 4 Recommendations
ters 10 and 11 of Hoaglin, Mosteller and Tukey (1983). In order to estimate a complex-valued regression co-
We have s different weight functions (wi(u), w2 (u), . efficient using the M-estimation technique, we use two
w,(u)) and therefore s estimators of 3 ( w,, 1 3, ", different sets of iterations. In the first set of iterations

,6w.). We want to investigate which estimator among we choose a weight function, usually the redescending
these is the most efficient over a wide range of distri- Huber or Hampel weight function so as not to reject too
butions. The optrim-efficiency for a specified estimator many outlier points too early, and iterate until the resid-
is the ratio of the variance of the best estimator (the ual norm Irnrl does not change appreciably. In the sec-
optrim) for a given distribution to the variance of the ond set of iterations we choose another weight function
specified estimator. With weighted least squares estima- dependent on sample size and iterate it similarly until
tors /3, the optrim-efficiency is we get the desired convergence. For most sample sizes

we looked at, the M-Thoinson weight function seems to
Optrim-Eff (. IF) = ((X WkX)-'11 (4.1) dominate. Other good choices for the second set are the

1 I(X"Wx)-1l Thomson, logistic, or hyperbolic tan functions.
where the notation wk means the diagonal matrix whose
jth diagonal element is wk(Irj/dI). Acknowledgement
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Abstract: Minimum total error, or L1, regression estimates n
are a generalization of the sample median to prediction prob- problem m in p jy -/4 . It is standard that the solution g is the
lems. Multivariate extensions therefore involve the concept of A =

a multivariate median. There are many inequivalent character- sample median. Similarly, the solution of the least squares

izations of a multivariate median in the literature, all of which location problem is the sample mean. When we proceed to

seem to have at least one of two major difficulties: either they several variables, it is still true in every sense that the multiva-

lack the property of affine covariance which we have come to hate sample mean, with the obvious definition, is the solution

expect from ordinary multivariate regression, or they are of the least squares problem. However, even the apprcpriate

computationally highly unpleasant. We here propose a defini- definition of a multivariate median is problematic; so that it is

tion of multivariate median, inspired by the theory of M- not obvious what is meant by multivariate L' regression.

estimation, that transforms appropriately under linear changes A number of possible definitions of multivariate median

of variables. Furthermore, it may be computed straightfor- are discussed in Small [19901. Perhaps the simplest is the

wardly using a fixed-point property. The result is a resistant vector of medians of each coordinate by itself. This corre-

multivariate regression estimate that is intuitively appealing sponds to solving the least total error problem for each depen-

and, surprisingly, increasingly efficient at the normal model in dent variable separately. For some applications this may be

higher dimensions. We share some computational experience reasonable, but it has one obvious major flaw: if we take a

with this estimator. rotation of the dependent variables, it is not generally true that
the median of the rotated data is the rotation of the median.

I. Introduction Another simple definition of the multivariate median is ob-
Linear regression is perhaps the central tool of modem tained by extending minimum total error to a minimum total

statistics; it seeks predictive models of the form 5 = Xb. distance criterion:

The classical criterion for fitting this model goes back at n

least to Legendre, the method of least squares: min =1 l
P1a

nA

min (Yi-Xb )2  This approach, called the L' median, which dates back at
b least to Weber [ 19091, amounts to choosing a point in space so

The simplicity and power of this procedure is unexcelled. that the stars are scattered as uniformly as possible over the

However, in modem times, statisticians have become increas- celestial sphere. It is obviously unaffected by rotations. Unfor-

ingly concerned with the lack of robustness of the least-squares tunately, this idea for a median fails to transform nicely if we

technique-its sensitivity to a few observations for which the rescale one of the coordinates differently from the others. For

model fit is very poor. Perhaps the oldest technique for dealing example, if one variable is in inches and the other in dollars,
with this problem (predating even least squares, see e.g. Stigler changing the scale on the first axis to centimeters will change

[19861) is the minimum total error, or L1, criterion: the median in a nonobvious way. Since in statistical practice
our coordinates are often inhomogeneous, the applicability of

mini Z I-Xibl this definition is too limited.
b i=1 One of the great virtues of the median is its covariance

f is m under any monotone transformation. It is not clear that thisThe naturalness of this method is to some extent offset by its desideratum is achievable for any multivariate location mea-

greater computational difficulty and by its relatively low

efficiency at the normal model. However, it is robust-there is sure. However, it is certainly desirable, as our two examples

an upper bound on how much influence any poorly-fitting suggest, to have a multivariate median covariant under as rich

observation can have on predictions. Thus, the minimum total as possible a set of transformations of the data. For example,

error criterion has attracted considerable recent attention. the mean is affine, that is E(a + Bx) = a + R E(x). Arbitrary
Extension of the linear model to several dependent vari- linear changes of variables adjust the mean in the obvious way.

ables, multivariate regression, turns out to be straightforward We shall therefore restrict our attention to definitions of
using least-squares. However, extension of the least total error multivariate median that are affine; a number of these are
criterion to several dimensions turns out to be more problem- discussed in Small's survey. However, all of these concepts
atic. Consider the simplest case of regression, the location have at least one of two serious drawbacks. Either they are
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rather difficult to compute, or they do not generalize in any try, then pt, if it exists, is the center of symmetry. V, if it exists,
obvious way to a definition of multivariate median for distri- is a multiple of the quadratic form that characterizes the
butions. elliptical symmetry.

We shall propose an affine location criterion, the m- We are left to decide on an appropriate value for b. From
median, inspired by Huber's m-estimates, that is plausibly a the definition, it is clear that this decision has no effect on the
multivariate generalization of the ordinary median. It will have definition of .. However, a definite solution for Vwill be useful
an obvious characterization on distributions; and we will in various inferences about our model, and b scales V. If our
propose a reasonably efficient method for computing it. It has goal were primarily robustification of the normal model, we
the nice property that it becomes more nearly efficient at the would choose the constant so that V coincided with the cova-
normal model as the dimensionality increases. Extension to a riance of a multivariate normal random variable. For the
general tool for robust multivariate regression will be straight- general problem of an appropriate definition of LP scale, the
forward. normal family plays no special role. Therefore, I propose the
II. Multivarlate LP Location Estimation following criterion for deciding b: For a distribution uniform

Least squares and minimum total error are each special on the unit sphere, let V be identical to the ordinary covariance
n matrix; that is, 1/d I, where I is the identity matrix. Then our

cases of the U' location estimate which solves m in -Yl scale behaves predictably on the simplest affine family, oneAL
= out of which all others may readily be built. A calculation gets

It is this which we shall generalize to several variables.
Following the lead of Gauss, we recognize that multivariate b = PId i-P/2 .
least squares arises as maximum likelihood estimates of the Ill. The M-median
parameters in the multivariate normal family of densities The case p=l of a multivariate L location estimate will

e_.___ V-i/2'(x _/ give us our desired affine multivariate generalization of the
e2 median.

(2n)4i'/ (deta)h Definition: The m-median is any vector gi which solves
The family is affine, with the transformation rule for the mean

Tmin nlogdetV + fdyti- }vIxi 1

as above and for the covariance matrix V'=BVBT ; the i.v 2
p..V 2i=l

location estimate is the multivariate mean and the scale esti- Thedefinition for distributions is analogous. The m-median is
mate is the sample covariance matrix. This suggests a natural affine, but coincides with the L' median for spherically sym-
way to achieve an affine U location statistic: let it be the metric data. In particular it is the ordinary median in the case
maximum likelihood estimate of the parameters in the family of one variable. Notice that it is not defined if the observations

e- I(x -  1V - (x - )IP/2/ /  all fall in a hyperplane. In that case, use the definition that
C applies to the smallest-dimensienpi hyperplane that contains

(det VJ /2 all observations.

where b will be chosen later (it is essentially arbitrary, but we One fact is immediate: given d+I noncohyperplanar vec-
need a consistent choice), and c is the constant that lets th. tors, an m-median is at the barycenterof the simplex they form.
family integrate to one (we will never need to compute it). The For, we may transform them to the corners of a regular simplex,
maximum likelihood criterion for estimating this from an i.i.d. where the result follows from symmetry, then transform back.
sample of n random vectors is Milasevic and Ducharme 11987] have shown that the L'

n median is unique for noncolinear data. But then the m-median

minni kogdetV+l- r 1 (xIi)Tv-lx_gjp/2 is also unique in this case, as we may transform to the casemv 2 bi__ Ly where Vis a multiple of the identity and so the two definitions

The solution .t to this problem will constitute our definition of coincide.
an affine U' location statistic. The following partial result is Proposition: The relative efficiency of the m-median to
immediate: fora fixed nonsingular Va solution for.t exists and the mean in the multivariate normal case is
the collection of solutions is convex. If the observations do not Id42
lie in a hyperplane, then for fixed g a solution V exists. Any 2 F
joint solution is affine: the transformed solution is a solution d 2
for the transformed sample.

Notice that an extension of this definition to one for The proof involves computing the expected square of the
distributions is immediate-simply replace the sums with infinitesimal influence function of the statistic after transform-
expectations. If the random vector possesses elliptical symme-



fi :te L' Regression 131

ing to the spherically symmetric case. This generalizes a result algorithm is to obtain a starting estimate for li and V (for
of Brown 119831 for the L1 median. Here are some special example, the mean and covariance), then iterate until the
cases: estimates do not change significantly. In a large number of

trials this converged in all cases where I <_ p : 2. Our algo-
Dimension Efficiency rithm for computing the m-median is then just the case p= 1.

Surprisingly, this procedure was successful even in the case of
1 0.6366 the univariate median, though it converged very slowly and is

no competition for the usual median algorithms. In higher
dimensions, it usually converged moderately rapidly, getting

3 0.8488 6 significant figures in perhaps 20 iterations. The exceptions to
this were usually cases in which I.t coincided with a data point-

4 0.8836 then convergence was very slow. Presumably the algorithm
oo 1.0000 could be modified to recognize this special case. Except in one

dimension, it seems to be very unusual for the location to
Thus, the m-median becomes more nearly efficient in coincide with a data point.

higher dimensions, and because of its robustness (since the Scott et al [ 19781 report the serum cholesterol and triglyc-
influence function of a point is bounded) is a worthy competi- eride levels for 320 males who reported chest pain. The sample
tor to classical measures of location, mean was cholesterol 216.19 and triglycerides 179.35, with a

One interesting phenomenon should be noted: since the correlation of.228. After fewer than 20 iterations we found the
m-median is covariant under arbitrary linear changes of coor- m-median was cholesterol 212.71 and triglycerides 156.37
dinates, it is afflicted by a sort of nonrobustness in certain with a "correlation" of .240. A few very high triglycerides
cases. If all but a few observations lie in a hyperplane, points levels apparently distorted the typical value, and even diluted
off that hyperplane may be arbitrarily influential on the coor- the correlation slightly. The figure shows a sparse histogram of
dinates of the m-median in the directions orthogonal to the this data set (with several extreme cases unfortunate!y cen-
hyperplane. This seems unavoidable for nontrivial affine sta- sored). The digit 2 indicates the mean and I the m-median.
tistics. The extension to LU multivariate regression is straightfor-
IV. Computing the Estimates ward: replace f.t by a linear model with one or several indcpcn-

In the case p=2, we have closed form estimates for the dent variables, and V is then a sort of covariance matrix of the
multivariate mean and the covariance matrix. For computing multiple residuals. The first fixed point equation becomes a
the general affine U location statistic, we need system of weighted normal equations; our method is thus a

Theorem: A fixed point for the affine U location fitting special case of iteratively reweighted least-squares. Tests and
criterion is given by confidence statements for such a method raise a number of

interesting questions, which will be dealt with in a later paper.
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